
Communications System Toolbox™

Getting Started Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Communications System Toolbox™ Getting Started Guide

© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 First printing New for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 5.6 (Release 2014a)

Contents

Introduction

1
Communications System Toolbox Product
Description . 1-2
Key Features . 1-2

System Setup . 1-3
Required Products . 1-3
Expected Background . 1-3
Configure the Simulink Environment for Communications
Models . 1-3

Access the Block Libraries . 1-5

System Simulation

2
256-QAM with Simulink Blocks . 2-2
Section Overview . 2-2
Opening the Model . 2-2
Overview of the Model . 2-3
Quadrature Amplitude Modulation 2-4
Run a Simulation . 2-5
Display the Error Rate . 2-6
Set Block Parameters . 2-7
Display a Phase Noise Plot . 2-9

16-QAM with MATLAB Functions 2-11
Introduction . 2-11
Modulate a Random Signal . 2-11
Plot Signal Constellations . 2-18
Pulse Shaping Using a Raised Cosine Filter 2-23
Error Correction using a Convolutional Code 2-30

v

Iterative Design Workflow for Communication
Systems . 2-35
Simulate a basic communications system 2-36
Introduce convolutional coding and hard-decision Viterbi
decoding . 2-41

Improve results using soft-decision decoding 2-46
Use turbo coding to improve BER performance 2-51
Apply a Rayleigh channel model . 2-54
Use OFDM-based equalization to correct multipath
fading . 2-59

Use multiple antennas to further improve system
performance . 2-62

Accelerate the simulation using MATLAB Coder 2-66

QPSK and OFDM with MATLAB System Objects 2-70
Simulate a basic communications system 2-71
Introduce convolutional coding and hard-decision Viterbi
decoding . 2-74

Improve results using soft-decision decoding 2-76
Use turbo coding to improve BER performance 2-79
Apply a Rayleigh channel model . 2-80
Use OFDM-based equalization to correct multipath
fading . 2-83

Use multiple antennas to further improve system
performance . 2-84

Accelerate the simulation using MATLAB Coder 2-86

Accelerating BER Simulations Using the Parallel
Computing Toolbox . 2-89

Visualization and Measurements

3
Scatter Plot and Eye Diagram with MATLAB 3-2

Scatter Plot and Eye Diagram with MATLAB 3-8

EVM and MER Measurements with Simulink 3-14

vi Contents

ACPR and CCDF Measurements with MATLAB 3-22
ACPR Measurements . 3-22
CCDF Measurements . 3-26

System Objects

4
What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

When to Use System Objects Instead of MATLAB
Functions . 4-5
System Objects vs. MATLAB Functions 4-5
Process Audio Data Using Only MATLAB Functions
Code . 4-5

Process Audio Data Using System Objects 4-6

System Design and Simulation in MATLAB 4-8

System Design and Simulation in Simulink 4-9

System Objects in MATLAB Code Generation 4-10
System Objects in Generated Code 4-10
System Objects in codegen . 4-16
System Objects in the MATLAB Function Block 4-16
System Objects in the MATLAB System Block 4-16
System Objects and MATLAB Compiler Software 4-16

System Objects in Simulink . 4-17
System Objects in the MATLAB Function Block 4-17
System Objects in the MATLAB System Block 4-17

System Object Methods . 4-18
What Are System Object Methods? 4-18
The Step Method . 4-18
Common Methods . 4-19

vii

System Design in MATLAB Using System Objects 4-21
Create Components for Your System 4-21
Configure Components for Your System 4-22
Assemble Components to Create Your System 4-23
Run Your System . 4-25
Reconfigure Your System During Runtime 4-25

System Design in Simulink Using System Objects 4-28
Define NewKinds of System Objects for Use in Simulink . . 4-28
Test New System Objects in MATLAB 4-34
Add System Objects to Your Simulink Model 4-35

viii Contents

1

Introduction

• “Communications System Toolbox Product Description” on page 1-2

• “System Setup” on page 1-3

• “Access the Block Libraries” on page 1-5

1 Introduction

Communications System Toolbox Product Description
Design and simulate the physical layer of communication systems

Communications System Toolbox™ provides algorithms for designing,
simulating, and analyzing communications systems. These capabilities
are provided as MATLAB® functions, MATLAB System objects, and
Simulink® blocks. The system toolbox enables source coding, channel
coding, interleaving, modulation, equalization, synchronization, and channel
modeling. You can also analyze bit error rates, generate eye and constellation
diagrams, and visualize channel characteristics. Using adaptive algorithms,
you can model dynamic communications systems that use OFDM, OFDMA,
and MIMO techniques. Algorithms support fixed-point data arithmetic and
C or HDL code generation.

Key Features

• Algorithms for designing the physical layer of communications systems,
including source coding, channel coding, interleaving, modulation, channel
models, MIMO, equalization, and synchronization

• GPU-enabled System objects for computationally intensive algorithms such
as Turbo, LDPC, and Viterbi decoders

• Eye Diagram Scope app and visualization functions for constellations and
channel scattering

• Bit Error Rate app for comparing the simulated bit error rate of a system
with analytical results

• Channel models, including AWGN, Multipath Rayleigh Fading, Rician
Fading, MIMO Multipath Fading, and LTE MIMO Multipath Fading

• Basic RF impairments, including nonlinearity, phase noise, thermal noise,
and phase and frequency offsets

• Algorithms available as MATLAB functions, MATLAB System objects,
and Simulink blocks

• Support for fixed-point modeling and C and HDL code generation

1-2

System Setup

System Setup

In this section...

“Required Products” on page 1-3

“Expected Background” on page 1-3

“Configure the Simulink Environment for Communications Models” on
page 1-3

Required Products
The Communications System Toolbox product is part of a
family of MathWorks® products. You need to install several
products to use this product. For more information about
the required products, see the MathWorks website, at
http://www.mathworks.com/products/communications/requirements.html.

Expected Background
This documentation assumes that you already have background knowledge in
the subject of digital communications. If you do not yet have this background,
then you can acquire it using a standard communications text or the books
listed in the Selected Bibliography subsections that accompany many topics.

The discussion and examples in this section are aimed at new users. Continue
reading and try the examples. Then, read the subsequent content that
pertains to your specific areas of interest. As you learn which System object™,
block, or function you want to use, refer to the online reference pages for
more information.

Configure the Simulink Environment for
Communications Models

Using commstartup.m
The Communications System Toolbox product provides a file, commstartup.m.
This file changes the default Simulink model settings to values more
appropriate for the simulation of communication systems. The changes apply

1-3

http://www.mathworks.com/products/communications/requirements.html

1 Introduction

to new models that you create later in the MATLAB session, but not to
previously created models.

Note The DSP System Toolbox™ application includes a similar dspstartup
script, which assigns different model settings. For modeling communication
systems, you should use commstartup alone.

To install the communications-related model settings each time you start
MATLAB, invoke commstartup from your startup.m file. The settings in
commstartup cause models to:

• Use the variable-step discrete solver in single-tasking mode

• Use starting and ending times of 0 and Inf, respectively

• Avoid producing a warning or error message for inherited sample times
in source blocks

• Set the Simulink Boolean logic signals parameter to Off

• Avoid saving output or time information to the workspace

• Produce an error upon detecting an algebraic loop

• Inline parameters if you use the Model Reference feature of Simulink

If your communications model does not work well with these default settings,
you can change each of the individual settings as the model requires.

1-4

Access the Block Libraries

Access the Block Libraries
To view the block libraries for the products you have installed, type simulink
at the MATLAB prompt (or click the Simulink button on the MATLAB
toolbar). The Simulink Library Browser appears.

Simulink Library Browser

The left pane displays the installed products, each of which has its own library
of blocks. To open a library, click the + sign next to the product name in the
left pane. This displays the contents of the library in the right pane.

You can find the blocks you need to build communications system models in
the Communications System Toolbox, DSP System Toolbox, and Simulink
libraries.

Alternatively, you can access the main Communications System Toolbox block
library by entering commlib at the MATLAB command line.

1-5

1 Introduction

1-6

2

System Simulation

• “256-QAM with Simulink Blocks” on page 2-2

• “16-QAM with MATLAB Functions” on page 2-11

• “Iterative Design Workflow for Communication Systems” on page 2-35

• “QPSK and OFDM with MATLAB System Objects” on page 2-70

• “Accelerating BER Simulations Using the Parallel Computing Toolbox”
on page 2-89

2 System Simulation

256-QAM with Simulink Blocks

In this section...

“Section Overview” on page 2-2

“Opening the Model” on page 2-2

“Overview of the Model” on page 2-3

“Quadrature Amplitude Modulation” on page 2-4

“Run a Simulation” on page 2-5

“Display the Error Rate” on page 2-6

“Set Block Parameters” on page 2-7

“Display a Phase Noise Plot” on page 2-9

Section Overview
This section describes an example model of a communications system. The
model displays a scatter plot of a signal with added noise. The purpose of
this section is to familiarize you with the basics of Simulink models and how
they function.

Opening the Model
To open the model, first start MATLAB. In the MATLAB Command Window,
enter doc_commphasenoise at the prompt. This opens the model in a new
window, as shown in the following figure.

2-2

256-QAM with Simulink® Blocks

Overview of the Model
The model shown in the preceding section, “Opening the Model” on page 2-2,
simulates the effect of phase noise on quadrature amplitude modulation
(QAM) of a signal. The Simulink model is a graphical representation of a
mathematical model of a communication system that generates a random
signal, modulates it using QAM, and adds noise to simulate a channel. The
model also contains components for displaying the symbol error rate and a
scatter plot of the modulated signal.

2-3

2 System Simulation

The blocks and lines in the Simulink model describe mathematical
relationships among signals and states:

• The Random Integer Generator block, labeled Random Integer, generates a
signal consisting of a sequence of random integers between zero and 255

• The Rectangular QAM Modulator Baseband block, to the right of the
Random Integer Generator block, modulates the signal using baseband
256-ary QAM.

• The AWGN Channel block models a noisy channel by adding white
Gaussian noise to the modulated signal.

• The Phase Noise block introduces noise in the angle of its complex input
signal.

• The Rectangular QAM Demodulator Baseband block, to the right of the
Phase Noise block, demodulates the signal.

In addition, the following blocks in the model help you interpret the
simulation:

• The Constellation Diagram block, labeled AWGN plus Phase Noise,
displays a scatter plot of the signal with added noise.

• The Error Rate Calculation block counts symbols that differ between the
received signal and the transmitted signal.

• The Display block, at the far right of the model window, displays the
symbol error rate (SER), the total number of errors, and the total number
of symbols processed during the simulation.

All these blocks are included in Communications System Toolbox. You can
find more detailed information about these blocks by right-clicking the block
and selecting Help from the context menu.

Quadrature Amplitude Modulation
This model simulates quadrature amplitude modulation (QAM), which is
a method for converting a digital signal to a complex signal. The model
modulates the signal onto a sequence of complex numbers that lie on a lattice
of points in the complex plane, called the constellation of the signal. The
constellation for baseband 256-ary QAM is shown in the following figure.

2-4

256-QAM with Simulink® Blocks

Constellation for 256-ary QAM

Run a Simulation
To run a simulation, click on the Run button at the top of the model window.
The simulation stops automatically at the Stop time, which is specified in
the Configuration Parameters dialog box. You can stop the simulation
at any time by selecting Stop from the Simulation menu at the top of the
model window (or, on Microsoft Windows, by clicking the Stop button on
the toolstrip).

When you run the model, a new window appears, displaying a scatter plot of
the modulated signal with added noise, as shown in the following figure.

2-5

2 System Simulation

Scatter Plot of Signal Plus Noise

The points in the scatter plot do not lie exactly on the constellation shown in
the figure because of the added noise. The radial pattern of points is due to
the addition of phase noise, which alters the angle of the complex modulated
signal.

Display the Error Rate
The Display block displays the number of errors introduced by the channel
noise. When you run the simulation, three small boxes appear in the block,
as shown in the following figure, displaying the vector output from the Error
Rate Calculation block.

Note The image below is a representative example and may not exactly
match results you see when running in Simulink.

2-6

256-QAM with Simulink® Blocks

Error Rate Display

The block displays the output as follows:

• The first entry is the symbol error rate (SER).

• The second entry is the total number of errors.

• The third entry is the total number of comparisons made. The notation
1e+004 is shorthand for 104.

Set Block Parameters
You can control the way a Simulink block functions by setting its parameters.
To view or change a block’s parameters, double-click the block. This opens a
dialog box, sometimes called the block’s mask. For example, the dialog box for
the Phase Noise block is shown in the following figure.

2-7

2 System Simulation

Dialog for the Phase Noise Block

2-8

256-QAM with Simulink® Blocks

To change the amount of phase noise, click in the Phase noise level
(dBc/Hz) field and enter a new value. Then click OK.

Alternatively, you can enter a variable name, such as phasenoise, in the
field. You can then set a value for that variable in the MATLAB Command
Window, for example by entering phasenoise = -60. Setting parameters in
the Command Window is convenient if you need to run multiple simulations
with different parameter values.

You can also change the amount of noise in the AWGN Channel block.
Double-click the block to open its dialog box, and change the value in the
Es/No parameter field. This changes the signal to noise ratio, in dB.
Decreasing the value of Es/No increases the noise level.

You can experiment with the model by changing these or other parameters
and then running a simulation. For example,

• Change Phase noise level (dBc/Hz) to -150 in the dialog box for the
Phase Noise block.

• Change Es/No to 100 in the dialog for the AWGN Channel block.

This removes nearly all noise from the model. When you now run a
simulation, the scatter plot appears as in the figure Constellation for 256-ary
QAM on page 2-5.

Display a Phase Noise Plot
Double-click the block labeled “Display Figure” at the bottom left of the model
window. This displays a plot showing the results of multiple simulations.

2-9

2 System Simulation

BER Plot at Different Noise Levels

Each curve is a plot of bit error rate as a function of signal to noise ratio for a
fixed amount of phase noise.

You can create plots like this by running multiple simulations with different
values for the Phase noise level (dBc/Hz) and Es/No parameters.

2-10

16-QAM with MATLAB® Functions

16-QAM with MATLAB Functions

In this section...

“Introduction” on page 2-11

“Modulate a Random Signal” on page 2-11

“Plot Signal Constellations” on page 2-18

“Pulse Shaping Using a Raised Cosine Filter” on page 2-23

“Error Correction using a Convolutional Code” on page 2-30

Introduction
Communications System Toolbox software implements a variety of
communications-related tasks. Many of the functions in the toolbox perform
computations associated with a particular component of a communication
system, such as a demodulator or equalizer. Other functions are designed for
visualization or analysis. The toolbox includes both functions and System
objects. Which to use is described in “When to Use System Objects Instead
of MATLAB Functions” on page 4-5.

This section builds an example step-by-step to give you a first look at the
Communications System Toolbox software. This section also shows how
Communications System Toolbox functionalities build upon the computational
and visualization tools in the underlying MATLAB environment.

Modulate a Random Signal
This example shows how to process a binary data stream using a
communication system that consists of a baseband modulator, channel,
and demodulator. The system’s bit error rate (BER) is computed and the
transmitted and received signals are displayed in a constellation diagram.

The following table summarizes the basic operations used, along with relevant
Communications System Toolbox and MATLAB functions. The example uses
baseband 16-QAM (quadrature amplitude modulation) as the modulation
scheme and AWGN (additive white Gaussian noise) as the channel model.

2-11

2 System Simulation

Task Function

Generate a Random Binary Data Stream randi

Convert the Binary Signal to an
Integer-Valued Signal

bi2de

Modulate using 16-QAM qammod

Add White Gaussian Noise awgn

Create a Constellation Diagram scatterplot

Demodulate using 16-QAM qamdemod

Convert the Integer-Valued Signal to a Binary
Signal

de2bi

Compute the System BER biterr

Generate a Random Binary Data Stream
The conventional format for representing a signal in MATLAB is a vector
or matrix. This example uses the randi function to create a column vector
that contains the values of a binary data stream. The length of the binary
data stream (that is, the number of rows in the column vector) is arbitrarily
set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Notice the use of the colon (:) operator in
MATLAB to select a portion of the vector.

Define parameters.

M = 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
n = 30000; % Number of bits to process
numSamplesPerSymbol = 1; % Oversampling factor

2-12

16-QAM with MATLAB® Functions

Create a binary data stream as a column vector.

rng('default') % Use default random number generator
dataIn = randi([0 1],n,1); % Generate vector of binary data

Plot the first 40 bits in a stem plot.

stem(dataIn(1:40),'filled');
title('Random Bits');
xlabel('Bit Index'); ylabel('Binary Value');

2-13

2 System Simulation

Convert the Binary Signal to an Integer-Valued Signal
The qammod function implements a rectangular, M-ary QAM modulator, M
being 16 in this example. The default configuration is such that the object
receives integers between 0 and 15 rather than 4-tuples of bits. In this
example, we preprocess the binary data stream dataIn before using the
qammod function. In particular, the bi2de function is used to convert each
4-tuple to a corresponding integer.

Perform a bit-to-symbol mapping.

dataInMatrix = reshape(dataIn, length(dataIn)/4, 4); % Reshape data into bi
dataSymbolsIn = bi2de(dataInMatrix); % Convert to integers

Plot the first 10 symbols in a stem plot.

figure; % Create new figure window.
stem(dataSymbolsIn(1:10));
title('Random Symbols');
xlabel('Symbol Index'); ylabel('Integer Value');

2-14

16-QAM with MATLAB® Functions

Modulate using 16-QAM
Having generated the dataSymbolsIn column vector, use the qammod function
to apply 16-QAM modulation. Recall that M is 16, the alphabet size.

Apply modulation.

dataMod = qammod(dataSymbolsIn, M);

2-15

2 System Simulation

The result is a complex column vector whose values are elements of the
16-QAM signal constellation. A later step in this example will plot the
constellation diagram.

To learn more about modulation functions, see “Digital Modulation”. Also,
note that the qammod function does not apply pulse shaping. To extend this
example to use pulse shaping, see “Pulse Shaping Using a Raised Cosine
Filter” on page 2-23. For an example that uses Gray coding with PSK
modulation, see Gray Coded 8-PSK.

Add White Gaussian Noise
The ratio of bit energy to noise power spectral density, Eb/N0, is arbitrarily set
to 10 dB. From that value, the signal-to-noise ratio (SNR) can be determined.
Given the SNR, the modulated signal, dataMod, is passed through the channel
by using the awgn function.

Note The numSamplesPerSymbol variable is not significant in this example
but will make it easier to extend the example later to use pulse shaping.

Calculate the SNR when the channel has an Eb/N0 = 10 dB.

EbNo = 10;
snr = EbNo + 10*log10(k) - 10*log10(numSamplesPerSymbol);

Pass the signal through the AWGN channel.

receivedSignal = awgn(dataMod, snr, 'measured');

Create a Constellation Diagram
The scatterplot function is used to display the in-phase and quadrature
components of the modulated signal, dataMod, and its received, noisy version,
receivedSignal. By looking at the resultant diagram, the effects of AWGN
are readily observable.

Use the scatterplot function to show the constellation diagram.

2-16

16-QAM with MATLAB® Functions

sPlotFig = scatterplot(receivedSignal, 1, 0, 'g.');
hold on
scatterplot(dataMod, 1, 0, 'k*', sPlotFig)

Demodulate 16-QAM
The qamdemod function is used to demodulate the received data and output
integer-valued data symbols.

2-17

2 System Simulation

Demodulate the received signal using the qamdemod function.

dataSymbolsOut = qamdemod(receivedSignal, M);

Convert the Integer-Valued Signal to a Binary Signal
The de2bi function is used to convert the data symbols from the QAM
demodulator, dataSymbolsOut, into a binary matrix, dataOutMatrix with
dimensions of Nsym-by-Nbits/sym, where Nsym is the total number of QAM
symbols and Nbits/sym is the number of bits per symbol, four in this case. The
matrix is then converted into a column vector whose length is equal to the
number of input bits, 30,000.

Reverse the bit-to-symbol mapping performed earlier.

dataOutMatrix = de2bi(dataSymbolsOut,k);
dataOut = dataOutMatrix(:); % Return data in column vector

Compute the System BER
The function biterr is used to calculate the bit error statistics from the
original binary data stream, dataIn, and the received data stream, dataOut.

Use the error rate function to compute the error statistics and use fprintf
to display the results.

[numErrors, ber] = biterr(dataIn, dataOut);
fprintf('\nThe bit error rate = %5.2e, based on %d errors\n', ...

ber, numErrors)

The bit error rate = 2.40e-03, based on 72 errors

Plot Signal Constellations
The example in the previous section, “Modulate a Random Signal” on page
2-11, created a scatter plot from the modulated signal. Although the plot
showed the points in the QAM constellation, the plot did not indicate which
integers of the modulator are mapped to a given constellation point. This

2-18

16-QAM with MATLAB® Functions

section illustrates two possible mappings: 1) binary coding, and 2) Gray
coding.

Binary Symbol Mapping for 16-QAM Constellation
Apply 16-QAM modulation to all possible input values using the default
symbol mapping, binary.

M = 16; % Modulation order
x = (0:15)'; % Integer input
y1 = qammod(x, 16, 0); % 16-QAM output, phase offset = 0

Use the scatterplot function to plot the constellation diagram and annotate
it with binary representations of the constellation points.

scatterplot(y1)
text(real(y1)+0.1, imag(y1), dec2bin(x))
title('16-QAM, Binary Symbol Mapping')
axis([-4 4 -4 4])

2-19

2 System Simulation

Gray-coded Symbol Mapping for 16-QAM Constellation
Apply 16-QAM modulation to all possible input values using Gray-coded
symbol mapping.

y2 = qammod(x, 16, 0, 'gray'); % 16-QAM output, phase offset = 0, Gray-cod

Use the scatterplot function to plot the constellation diagram and annotate
it with binary representations of the constellation points.

2-20

16-QAM with MATLAB® Functions

scatterplot(y2)
text(real(y2)+0.1, imag(y2), dec2bin(x))
title('16-QAM, Gray-coded Symbol Mapping')
axis([-4 4 -4 4])

Examine the Plots
In the binary mapping plot, notice that symbols 1 (0 0 0 1) and 2 (0 0 1 0)
correspond to adjacent constellation points on the left side of the diagram.

2-21

2 System Simulation

The binary representations of these integers differ by two bits unlike the
Gray-coded signal constellation in which each point differs by only one bit
from its direct neighbors.

2-22

16-QAM with MATLAB® Functions

Pulse Shaping Using a Raised Cosine Filter
The “Modulate a Random Signal” on page 2-11 example was modified to
employ a pair of square-root raised cosine (RRC) filters to perform pulse
shaping and matched filtering. The filters are created by the rcosdesign
function. In “Error Correction using a Convolutional Code” on page 2-30,
this example is extended by introducing forward error correction (FEC) to
improve BER performance.

To create a BER simulation, a modulator, demodulator, communication
channel, and error counter functions must be used and certain key parameters
must be specified. In this case, 16-QAM modulation is used in an AWGN
channel.

Establish Simulation Framework
Set the simulation parameters.

M = 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
numBits = 3e5; % Number of bits to process
numSamplesPerSymbol = 4; % Oversampling factor

Create Raised Cosine Filter
Set the square-root, raised cosine filter parameters.

span = 10; % Filter span in symbols
rolloff = 0.25; % Roloff factor of filter

Create a square-root, raised cosine filter using the rcosdesign function.

rrcFilter = rcosdesign(rolloff, span, numSamplesPerSymbol);

Display the RRC filter impulse response using the fvtool function.

fvtool(rrcFilter,'Analysis','Impulse')

2-23

2 System Simulation

BER Simulation
Use the randi function to generate random binary data. The rng function
should be set to its default state so that the example produces repeatable
results.

rng('default') % Use default random number generator
dataIn = randi([0 1], numBits, 1); % Generate vector of binary data

Reshape the input vector into a matrix of 4-bit binary data, which is then
converted into integer symbols.

dataInMatrix = reshape(dataIn, length(dataIn)/k, k); % Reshape data into bi
dataSymbolsIn = bi2de(dataInMatrix); % Convert to integers

Apply 16-QAM modulation using qammod.

2-24

16-QAM with MATLAB® Functions

dataMod = qammod(dataSymbolsIn, M);

Using the upfirdn function, upsample and apply the square-root, raised
cosine filter.

txSignal = upfirdn(dataMod, rrcFilter, numSamplesPerSymbol, 1);

The upfirdn function upsamples the modulated signal, dataMod, by a factor
of numSamplesPerSymbol, pads the upsampled signal with zeros at the end to
flush the filter and then applies the filter.

Set the Eb/N0 to 10 dB and convert the SNR given the number of bits per
symbol, k, and the number of samples per symbol.

EbNo = 10;
snr = EbNo + 10*log10(k) - 10*log10(numSamplesPerSymbol);

Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txSignal, snr, 'measured');

Filter the received signal using the square-root, raised cosine filter and
remove a portion of the signal to account for the filter delay in order to make a
meaningful BER comparison.

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,numSamplesPerSymbol); % Downs
rxFiltSignal = rxFiltSignal(span+1:end-span); % Accou

These functions apply the same square-root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of
nSamplesPerSymbol. The last command removes the first Span symbols and
the last Span symbols in the decimated signal because they represent the
cumulative delay of the two filtering operations. Now rxFiltSignal, which
is the input to the demodulator, and dataSymbolsOut, which is the output
from the modulator, have the same vector size. In the part of the example
that computes the bit error rate, it is required to compare vectors that have
the same size.

Apply 16-QAM demodulation to the received, filtered signal.

dataSymbolsOut = qamdemod(rxFiltSignal, M);

2-25

2 System Simulation

Using the de2bi function, convert the incoming integer symbols into binary
data.

dataOutMatrix = de2bi(dataSymbolsOut,k);
dataOut = dataOutMatrix(:); % Return data in column vector

Apply the biterr function to determine the number of errors and the
associated BER.

[numErrors, ber] = biterr(dataIn, dataOut);
fprintf('\nThe bit error rate = %5.2e, based on %d errors\n', ...

ber, numErrors)

The bit error rate = 2.42e-03, based on 727 errors

Visualization of Filter Effects
Create an eye diagram for a portion of the filtered signal.

eyediagram(txSignal(1:2000),numSamplesPerSymbol*2);

2-26

16-QAM with MATLAB® Functions

The eyediagram function creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note

2-27

2 System Simulation

that the signal shows significant intersymbol interference (ISI) because the
filter is a square-root raised cosine filter, not a full raised cosine filter.

Created a scatter plot of the received signal before and after filtering.

h = scatterplot(sqrt(numSamplesPerSymbol)*...
rxSignal(1:numSamplesPerSymbol*5e3),...
numSamplesPerSymbol,0,'g.');

hold on;
scatterplot(rxFiltSignal(1:5e3),1,0,'kx',h);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges
hold off;

2-28

16-QAM with MATLAB® Functions

Notice that the first scatterplot command scales rxSignal by
sqrt(numSamplesPerSymbol) when plotting. This is because the filtering
operation changes the signal’s power.

2-29

2 System Simulation

Error Correction using a Convolutional Code
Building upon the “Pulse Shaping Using a Raised Cosine Filter” on page 2-23
example, this example shows how bit error rate performance improves with
the addition of forward error correction, FEC, coding.

Establish Simulation Framework
To create the simulation, a modulator, demodulator, raised cosine filter pair,
communication channel, and error counter functions are used and certain key
parameters are specified. In this case, a 16-QAM modulation scheme with
raised cosine filtering is used in an AWGN channel. With the exception of
the number of bits, the specified parameters are identical to those used in
the previous example.

Set the simulation variables. The number of bits is increased from the
previous example so that the bit error rate may be estimated more accurately.

M = 16; % Size of signal constellat
k = log2(M); % Number of bits per symbol
numBits = 100000; % Number of bits to process
numSamplesPerSymbol = 4; % Oversampling factor

Generate Random Data
Use the randi function to generate random, binary data once the rng function
has been called. When set to its default value, the rng function ensures that
the results from this example are repeatable.

rng('default') % Use default random number
dataIn = randi([0 1], numBits, 1); % Generate vector of binary

Convolutional Encoding
The performance of the “Pulse Shaping Using a Raised Cosine Filter” on page
2-23 example can be significantly improved upon by employing forward error
correction. In this example, convolutional coding is applied to the transmitted
bit stream in order to correct errors arising from the noisy channel. Because it
is often implemented in real systems, the Viterbi algorithm is used to decode

2-30

16-QAM with MATLAB® Functions

the received data. A hard decision algorithm is used, which means that the
decoder interprets each input as either a “0” or a “1”.

Define a convolutional coding trellis for a rate 2/3 code. The poly2trellis
function defines the trellis that represents the convolutional code that
convenc uses for encoding the binary vector, dataIn. The two input
arguments of the poly2trellis function indicate the code’s constraint length
and generator polynomials, respectively.

tPoly = poly2trellis([5 4],[23 35 0; 0 5 13]);
codeRate = 2/3;

Encode the input data using the previously created trellis.

dataEnc = convenc(dataIn, tPoly);

Modulate Data
The encoded binary data is converted into an integer format so that 16-QAM
modulation can be applied.

Reshape the input vector into a matrix of 4-bit binary data, which is then
converted into integer symbols.

dataEncMatrix = reshape(dataEnc, ...
length(dataEnc)/k, k); % Reshape data into binary

dataSymbolsIn = bi2de(dataEncMatrix); % Convert to integers

Apply 16-QAM modulation.

dataMod = qammod(dataSymbolsIn, M);

Raised Cosine Filtering
As in the “Pulse Shaping Using a Raised Cosine Filter” on page 2-23 example,
RRC filtering is applied to the modulated signal before transmission. The
example makes use of the rcosdesign function to create the filter and the
upfirdn function to filter the data.

2-31

2 System Simulation

Specify the filter span and rolloff factor for the square-root, raised cosine filter.

span = 10; % Filter span in symbols
rolloff = 0.25; % Roloff factor of filter

Create the filter using the rcosdesign function.

rrcFilter = rcosdesign(rolloff, span, numSamplesPerSymbol);

Using the upfirdn function, upsample and apply the square-root, raised
cosine filter.

txSignal = upfirdn(dataMod, rrcFilter, numSamplesPerSymbol, 1);

AWGN Channel
Calculate the signal-to-noise ratio, SNR, based on the input Eb/N0, the
number of samples per symbol, and the code rate. Converting from Eb/N0
to SNR requires one to account for the number of information bits per
symbol. In the previous example, each symbol corresponded to k bits. Now,
each symbol corresponds to k*codeRate information bits. More concretely,
three symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits.

EbNo = 10;
snr = EbNo + 10*log10(k*codeRate)-10*log10(numSamplesPerSymbol);

Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txSignal, snr, 'measured');

Receive and Demodulate Signal
Filter the received signal using the RRC filter and remove a portion of the
signal to account for the filter delay in order to make a meaningful BER
comparison.

rxFiltSignal = upfirdn(rxSignal,rrcFilter,1,numSamplesPerSymbol); % Downs
rxFiltSignal = rxFiltSignal(span+1:end-span); % Accou

2-32

16-QAM with MATLAB® Functions

Demodulate the received, filtered signal using the qamdemod function.

dataSymbolsOut = qamdemod(rxFiltSignal, M);

Viterbi Decoding
Use the de2bi function to convert the incoming integer symbols into bits.

dataOutMatrix = de2bi(dataSymbolsOut,k);
codedDataOut = dataOutMatrix(:); % Return data in column ve

Decode the convolutionally encoded data with a Viterbi decoder. The syntax
for the vitdec function instructs it to use hard decisions. The ’cont’ argument
instructs it to use a mode designed for maintaining continuity when the
function is repeatedly invoked (as in a loop). Although this example does
not use a loop, the ’cont’ mode is used for the purpose of illustrating how to
compensate for the delay in this decoding operation.

traceBack = 16; % Traceback len
numCodeWords = floor(length(codedDataOut)*2/3); % Number of com
dataOut = vitdec(codedDataOut(1:numCodeWords*3/2), ... % Decode data

tPoly,traceBack,'cont','hard');

BER Calculation
Using the biterr function, compare dataIn and dataOut to obtain the
number of errors and the bit error rate while taking the decoding delay into
account. The continuous operation mode of the Viterbi decoder incurs a delay
whose duration in bits equals the traceback length, traceBack, times the
number of input streams at the encoder. For this rate 2/3 code, the encoder
has two input streams, so the delay is 2×traceBack bits. As a result, the
first 2×traceBack bits in the decoded vector, dataOut, are zeros. When
computing the bit error rate, the first 2×traceBack bits in dataOut and the
last 2×traceBack bits in the original vector, dataIn, are discarded. Without
delay compensation, the BER computation is meaningless.

decDelay = 2*traceBack; % Decoder delay
[numErrors, ber] = ...

biterr(dataIn(1:end-decDelay),dataOut(decDelay+1:end));

2-33

2 System Simulation

fprintf('\nThe bit error rate = %5.2e, based on %d errors\n', ...
ber, numErrors)

The bit error rate = 6.90e-04, based on 69 errors

It can be seen that for the same Eb/N0 of 10 dB, the number of errors when
using FEC is reduced as the BER is improves from 2.0×10-3 to 6.9×10-4.

More About Delays
The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends
on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find
out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

• The vitdec reference page

• “Delays of Convolutional Interleavers”

• “Fading Channels”

2-34

Iterative Design Workflow for Communication Systems

Iterative Design Workflow for Communication Systems

In this section...

“Simulate a basic communications system” on page 2-36

“Introduce convolutional coding and hard-decision Viterbi decoding” on
page 2-41

“Improve results using soft-decision decoding” on page 2-46

“Use turbo coding to improve BER performance” on page 2-51

“Apply a Rayleigh channel model” on page 2-54

“Use OFDM-based equalization to correct multipath fading” on page 2-59

“Use multiple antennas to further improve system performance” on page
2-62

“Accelerate the simulation using MATLAB Coder” on page 2-66

This example illustrates a design workflow that represents the iterative steps
for creating a wireless communications system with the Communications
System Toolbox. Because Communications System Toolbox supports both
MATLAB and Simulink, this example showcases design paths using MATLAB
code and Simulink blocks. As you progress through the workflow, you may
follow the design path for MATLAB, for Simulink, or for both products.

The workflow begins with a simple communications system and performs
bit error rate (BER) simulations to gauge system performance. BER
simulations are based on simulating a communications system with a given
signal-to-noise ratio (En/No), and then calculating the corresponding bit error
rate measurement to determine the number of errors in the transmitted
signal. The lower the BER measurement at a given signal-to-noise ratio,
the better the system performance.

This workflow starts with a simple communications system, and iteratively
adds the algorithmic components necessary to build a more complicated
system. These additional components include:

• Convolutional Encoding and Viterbi Decoding

• Turbo Coding

2-35

2 System Simulation

• Multipath Fading Channels

• OFDM-Based Transmission

• Multiple-Antenna Techniques

As you add components to the system, the workflow includes bit error
calculations so that you can progressively examine system performance. For
some components, theoretical or performance benchmarks are available.
In these cases, the workflow shows both the theoretical and measured
performance metric.

Simulate a basic communications system
This workflow starts with a simple QPSK modulator system that transmits a
signal through an AWGN channel and calculates the bit error rate to evaluate
system performance.

In MATLAB

1 CD to the following MATLAB folder:

matlab\help\toolbox\comm\examples

2 Type edit doc_design_iteration_basic_m at the MATLAB command line.

MATLAB opens a file you will use in this example. Notice that
this code employs four System objects from Communications System
Toolbox: comm.PSKModulator, comm.AWGN, comm.PSKDemodulator, and
comm.ErrorRate. For each EbNo value, the code runs in a while loop until
either the specified number of errors are observed or the maximum number of
bits are processed. Notice that the code executes each System object by calling
the step method. The code outputs BER, defined as the ratio of the observed
number of errors per number of bits processed. The subsequent MATLAB
functions that this example uses have a similar structure.

3 Type bertool at the MATLAB command line to open the Bit Error Rate
Analysis Tool.

4 When the BERTool application appears, click the Theoretical tab.

The first plot that you will generate is a theoretical curve.

2-36

Iterative Design Workflow for Communication Systems

5 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the
better the system performance. This simulation will run using different
values for the ratio, between 0 and 9.

6 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each
symbol is made up of two bits.

7 Click Plot.

The BERTool application generates the theoretical BER curve.

8 Cick the Monte Carlo tab.

Monte Carlo techniques use random sampling to compute data. Therefore,
the plot for the second simulation uses random sampling.

9 Enter 0:9 for the EbNo range.

10 Enter ber for the BER variable name.

11 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation.

12 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation
stops when it transmits the number of bits you specify for this parameter. In
this example, the simulation either stops when it transmits 10 million bits or
when it detects 200 errors.

13 Click the Browse button.

14 Navigate to matlab/help/toolbox/comm/examples, and select
doc_design_iteration_basic_m.m.

15 Click Run.

2-37

2 System Simulation

BERTool runs the simulation and generates simulation points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

Every function with two output variables and three input variables can be
called using BERTool. This is how you interpret the three input variables:

• The first variable is a scalar number that corresponds to EbNo.

2-38

Iterative Design Workflow for Communication Systems

• The second variable is the stopping criterion based on the maximum
number of errors to observe before stopping the simulation.

• The third variable is the stop criterion based on the maximum number of
bits to process before observe before stopping the simulation.

In Simulink

1 Type bertool at the MATLAB command line to open the Bit Error Rate
Analysis Tool.

2 When the BERTool application appears, click the Theoretical tab.

3 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the
better the system performance. This simulation will run using different
values for the ratio, between 0 and 9.

4 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each
symbol is made up of two bits.

5 Click Plot.

The BERTool application generates the theoretical BER curve.

6 Click the Monte Carlo tab.

7 Enter 0:9 or the EbNo range.

8 Enter ber for the BER variable name.

9 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation. The
simulation stops when it reaches either the Number of errors or the
Number of bits.

10 Enter 1e7 for the Number of bits.

2-39

2 System Simulation

The Number of bits is also a stop criteria for the simulation. The simulation
stops when it transmits the number of bits you specify for this parameter or
when it reaches the Number of errors. In this example, the simulation
either stops when it transmits 10 million bits or when it detects 200 errors.

11 Click the Browse button, select All Files for the Files of type field.

12 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_basic.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-40

Iterative Design Workflow for Communication Systems

Introduce convolutional coding and hard-decision
Viterbi decoding
Modify the basic communications model to include forward error correction.
Adding forward error correction to the basic communications model improves
system performance. In forward error correction, the transmitter sends

2-41

2 System Simulation

redundant bits, along with the message bits, through a wireless channel.
When the receiver accepts the transmitted signal, it uses the redundancy bits
to detect and correct errors that the channel may have introduced.

This section of the design workflow adds a convolutional encoder and a
Viterbi decoder to the communication system. This communications system
uses hard-decision Viterbi decoding. In hard-decision Viterbi decoding, the
demodulator maps the received signal to bits, and then passes the bits to the
Viterbi decoder for error correction.

In MATLAB

In this iteration of the design workflow, the MATLAB file you use starts from
where the one in the previous section ended. This file adds two additional
System objects to the communications system, comm.ConvolutionalEncoder
and comm.ViterbiDecoder. The overall structure of the code doesn’t change;
it simply contains additional functionality.

1 Access the BERTool application.

2 Clear the Plot check boxes for the two plots BERTool generated in the
previous step.

3 Click Theoretical.

4 Enter 0:7 for the EbNo range.

5 Select Convolutional for the Channel Coding.

6 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the
received signal to bits, and then passes the bits to the Viterbi decoder for
error correction.

7 Click Plot.

The BERTool application generates the theoretical BER curve.

8 Click Monte Carlo.

2-42

Iterative Design Workflow for Communication Systems

9 Enter 0:7 for the EbNo range.

10 Enter 200 for the Number of errors.

11 Enter 1e7 for the Number of bits.

12 Click the Browse button.

13 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_m.m and click Open.

14 Click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-43

2 System Simulation

In Simulink

1 Access the BERTool application.

2 Click the Theoretical tab.

3 Enter 0:7 for the EbNo range.

2-44

Iterative Design Workflow for Communication Systems

4 Select Convolutional for the Channel Coding.

5 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the
received signal to bits, and then passes the bits to the Viterbi decoder for
error correction.

6 Click Plot.

The BERTool application generates the theoretical BER curve.

7 Click the Monte Carlo tab.

8 Enter 0:7 for the EbNo range.

9 Enter 200 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button, select All Files for the Files of type field.

12 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi.slx and click Open.

13 click Run.BERTool runs the simulation and generates simulated points along
the BER curve. Compare the simulation BER curve with the theoretical
BER curve.

2-45

2 System Simulation

Improve results using soft-decision decoding
Use soft-decision decoding to improve BER performance. The previous
section of this workflow uses hard-decision demodulation and hard-decision
Viterbi decoding – processes that map symbols to bits. This section of the
workflow uses soft-decision demodulation and soft-decision Viterbi decoding.
In soft-decision demodulation, the received symbols are not mapped to bits.

2-46

Iterative Design Workflow for Communication Systems

Instead, the symbols are mapped to log-likelihood ratios. When the Viterbi
decoder processes log-likelihood ratios (LLR), the BER performance of the
system improves.

In MATLAB

1 Access the BERTool application.

2 Clear the Plot check boxes for the two plots BERTool generated in the
previous step.

3 Click Theoretical.

4 Enter 0:5 for the EbNo range.

5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the
received signal to log likelihood ratios, improving BER performance results.

6 Click Plot.

The BERTool application generates the theoretical BER curve.

7 Click Monte Carlo.

8 Enter 0:5 for the EbNo range.

9 Enter 200 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button.

12 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_soft_m.m and click Run.

BERTool runs the simulation and generates the actual simulated points along
the BER curve. Compare the simulation BER curve with the theoretical
BER curve.

2-47

2 System Simulation

In Simulink

1 Access the BERTool application.

2-48

Iterative Design Workflow for Communication Systems

2 Clear the Plot check boxes for the two plots BERTool generated in the
previous step.

3 Click Theoretical.

4 Enter 0:5for the EbNo range.

5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the
received signal to log likelihood ratios, improving BER performance results.

6 Click Plot.

The BERTool application generates the theoretical BER curve.

7 Click Monte Carlo.

8 Enter 0:5 for the EbNo range.

9 Enter 200 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button, select All Files for the Files of type field.

12 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_soft.slx and click Run.

2-49

2 System Simulation

When you plot the soft-decision theoretical curve, you will observe BER curve
improvements of about 2 dB relative to the hard-decision decoding. Notice
that the simulation results also reflects a similar BER improvement.

2-50

Iterative Design Workflow for Communication Systems

Use turbo coding to improve BER performance
Turbo codes substantially improve BER performance over soft-decision
Viterbi decoding. Turbo coding uses two convolutional encoders in parallel at
the transmitter and two a posteriori probability (APP) decoders in series at
the receiver. This example uses a rate 1/3 turbo coder. For each input bit,
the output has 1 systematic bit and 2 parity bits, for a total of three bits.
Turbo coders achieve BER performances at much lower SNR values than
convolutional encoders. As a result, this iteration uses a lower range of EbNo
values than the previous section.

In MATLAB

1 Access the BERTool application.

2 Click the Monte Carlo tab.

3 Enter 0:0.2:1.2 for the EbNo range.

4 Enter 200 for the Number of errors.

5 Enter 1e7 for the Number of bits.

6 Click the Browse button.

7 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_zTurbo_soft_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve.

2-51

2 System Simulation

In Simulink

1 Access the BERTool application.

2 Clear the Plot check boxes for the last plot BERTool generated in the
previous section.

2-52

Iterative Design Workflow for Communication Systems

3 Click the Monte Carlo tab.

4 Enter 0:0.2:1.2 for the EbNo range.

5 Enter 200 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button, select All Files for the Files of type field.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_turbo.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve.

2-53

2 System Simulation

Apply a Rayleigh channel model
The previous design iterations model narrowband communications systems
that can be adequately represented using an AWGN channel. However, high
data rate communications systems require a wideband channel. Wideband
communications channels are highly susceptible to the effects of multipath
propagation, which introduces intersymbol interference (ISI). Therefore, you

2-54

Iterative Design Workflow for Communication Systems

must model wideband channels as multipath fading channels. This iteration
of the design workflow uses a multipath fading Rayleigh channel, which
assumes no direct line-of-sight between the transmitter and receiver.

In MATLAB

1 Access the BERTool application.

2 Clear the Plot check box for the plot BERTool generated in the previous step.

3 Click Monte Carlo.

4 Enter 0:9 for the EbNo range.

5 Enter 200 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-55

2 System Simulation

In the presence of multipath fading, the BER performance reduces to that of
a binary channel with a consistent value of one-half. To correct the effect of
multipath fading, you must add equalization to the communications system.

In Simulink

1 Access the BERTool application.

2-56

Iterative Design Workflow for Communication Systems

2 Clear the Plot check box to clear the plot BERTool generated in the previous
step.

3 Click Monte Carlo.

4 Enter 0:7 for the EbNo range.

5 Enter 200 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button, select All Files for the Files of type field.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh.slx and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-57

2 System Simulation

In the presence of multipath fading, the BER performance reduces to that of
a binary channel with a consistent value of one-half. To correct the effect of
multipath fading, you must add equalization to the communications system.

2-58

Iterative Design Workflow for Communication Systems

Use OFDM-based equalization to correct multipath
fading
Use orthogonal frequency-division multiplexing (OFDM) to compensate for
the multipath fading effect introduced by the Rayleigh fading channel. OFDM
transmission schemes provides an effective way to perform frequency domain
equalization. This design iteration introduces an OFDM transmitter, an
OFDM receiver, and a frequency domain equalizer to the communications
system.

In MATLAB

1 Access the BERTool application.

2 Clear the Plot check boxes for the simulation plot generated in the previous
step.

3 Click the Monte Carlo tab.

4 Enter 0:9 for the EbNo range.

5 Enter 6000 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_Rayleigh_OFDM_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve.

2-59

2 System Simulation

In Simulink

1 Access the BERTool application.

2 Clear the Plot check boxes for the plots BERTool generated in the previous
step.

2-60

Iterative Design Workflow for Communication Systems

3 Click the Monte Carlo tab.

4 Enter 0:9 for the EbNo range.

5 Enter 6000 for the Number of errors.

6 Enter 5e7 for the Number of bits.

7 Click the Browse button, select All Files for the Files of type field.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_OFDM.slx and click Run.

BERTool runs the simulation and generates simulated points. Compare the
simulation BER curve with the theoretical BER curve.

2-61

2 System Simulation

Use multiple antennas to further improve system
performance
Simultaneously transmitting copies of a signal using multiple antennas
can significantly increase the likelihood that the receiver correctly recovers
the transmitted signal. This phenomenon is known as transmit diversity.

2-62

Iterative Design Workflow for Communication Systems

However, this performance improvement comes at the expense of introducing
additional computational complexity in the receiver.

In MATLAB

1 Access the BERTool application.

2 Clear the Plot check box to clear the simulation plot generated in the
previous step.

3 Click the Monte Carlo tab.

4 Enter 0:9 for the EbNo range.

5 Enter 1000 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-63

2 System Simulation

In Simulink

1 Access the BERTool application.

2 Click the Monte Carlo tab.

3 Enter 0:9 for the EbNo range.

2-64

Iterative Design Workflow for Communication Systems

4 Enter 700 for the Number of errors.

5 Enter 1e7 for the Number of bits.

6 Click the Browse button, select All Files for the Files of type field.

7 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO.slx and click Run.

2-65

2 System Simulation

Accelerate the simulation using MATLAB Coder
All of the functions and System objects that this design iteration workflow
uses support C code generation. If you have a MATLAB Coder™ license, you
can accelerate simulation speed by generating a .mex file using the codegen
command.

2-66

Iterative Design Workflow for Communication Systems

In MATLAB

1 Copy the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m file to a
folder that is not on the MATLAB path. For example, C:\Temp.

2 Change your working directory to the folder you just created.

3 Execute the following commands to set a numerical value for each of the input
arguments in the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m
function. For example:

EbNo=1;
MaxNumErrs=200;
MaxNumBits=1e7;

4 Execute the codegen command to generate the executable MATLAB file.

codegen -args {EbNo,MaxNumErrs,MaxNumBits}
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m

5 The file extension of the MATLAB executable file that gets generated
depends upon your operating system. For example, on 64–bit Windows®

the file extension will be .mexw64, and the full file name will be
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m_mex.mexw64.

If you run the mex file you just generated in BERTool, you will obtain the
simulation results more quickly.

6 Access the BERTool application.

7 Click the Monte Carlo tab.

8 Enter 0:9 for the EbNo range.

9 Enter 700 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button, and select All Files.

Navigate to folder you created in step 1 and click Run.

2-67

2 System Simulation

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the previous curve. Any
variation in the BER curve of the mex file and the MATLAB file from which
it was generated is related to the seed of the random number generator and
is statistically insignificant. In this example, BERTool generates the curve
much more quickly when you use MATLAB Coder to generate C code. Notice
that BERTool generates similar BER results in about 1/4 of the time that it
took for the original simulation took to complete.

2-68

Iterative Design Workflow for Communication Systems

2-69

2 System Simulation

QPSK and OFDM with MATLAB System Objects

In this section...

“Simulate a basic communications system” on page 2-71

“Introduce convolutional coding and hard-decision Viterbi decoding” on
page 2-74

“Improve results using soft-decision decoding” on page 2-76

“Use turbo coding to improve BER performance” on page 2-79

“Apply a Rayleigh channel model” on page 2-80

“Use OFDM-based equalization to correct multipath fading” on page 2-83

“Use multiple antennas to further improve system performance” on page
2-84

“Accelerate the simulation using MATLAB Coder” on page 2-86

This example illustrates a design workflow that represents the iterative steps
for creating a wireless communications system with the Communications
System Toolbox. This example showcases a design path using MATLAB
System objects.

The workflow begins with a simple communications system and performs
bit error rate (BER) simulations to gauge system performance. BER
simulations are based on simulating a communications system with a
given bit energy-to-noise density ratio (Eb/N0), and then calculating the
corresponding bit error rate measurement to determine the number of errors
in the transmitted signal. The lower the BER measurement at a given Eb/N0,
the better the system performance.

This workflow starts with a simple communications system, and iteratively
adds the algorithmic components necessary to build a more complicated
system. These additional components include:

• Convolutional Encoding and Viterbi Decoding

• Turbo Coding

• Multipath Fading Channels

2-70

QPSK and OFDM with MATLAB System Objects

• OFDM-Based Transmission

• Multiple-Antenna Techniques

As you add components to the system, the workflow includes bit error
calculations so that you can progressively examine system performance. For
some components, theoretical or performance benchmarks are available.
In these cases, the workflow shows both the theoretical and measured
performance metric.

Simulate a basic communications system
This workflow starts with a simple QPSK modulator system that transmits a
signal through an AWGN channel and calculates the bit error rate to evaluate
system performance.

1 Type edit doc_design_iteration_basic_m at the MATLAB command line.

MATLAB opens a file you will use in this example. Notice that this
code employs four System objects from Communications System Toolbox:
comm.PSKModulator, comm.AWGNChannel, comm.PSKDemodulator, and
comm.ErrorRate. For each Eb/N0 value, the code runs in a while loop until
either the specified number of errors are observed or the maximum number of
bits are processed. Notice that the code executes each System object by calling
the step method. The code outputs BER, defined as the ratio of the observed
number of errors per number of bits processed. The subsequent functions that
this example uses have a similar structure.

2 Type bertool at the MATLAB command line to open the Bit Error Rate
Analysis Tool.

3 When the BERTool application appears, click the Theoretical tab.

The first plot that you will generate is a theoretical curve.

4 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the
better the system performance. This simulation will run using different
values for the ratio, between 0 and 9.

2-71

2 System Simulation

5 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each
symbol is made up of two bits.

6 Click Plot.

The BERTool application generates the theoretical BER curve.

7 Cick the Monte Carlo tab.

Monte Carlo techniques use random sampling to compute data. Therefore,
the plot for the second simulation uses random sampling.

8 Enter 0:9 for the EbNo range.

9 Enter ber for the BER variable name.

10 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation.

11 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation
stops when it transmits the number of bits you specify for this parameter. In
this example, the simulation either stops when it transmits 10 million bits or
when it detects 200 errors.

12 Click the Browse button.

13 Navigate to matlab/help/toolbox/comm/examples, and select
doc_design_iteration_basic_m.m.

14 Click Run.

BERTool runs the simulation and generates simulation points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-72

QPSK and OFDM with MATLAB System Objects

Every function with two output variables and three input variables can be
called using BERTool. This is how you interpret the three input variables:

• The first variable is a scalar number that corresponds to Eb/N0.

• The second variable is the stopping criterion based on the maximum
number of errors to observe before stopping the simulation.

2-73

2 System Simulation

• The third variable is the stop criterion based on the maximum number of
bits to process before stopping the simulation.

Introduce convolutional coding and hard-decision
Viterbi decoding
Modify the basic communications model to include forward error correction.
Adding forward error correction to the basic communications model improves
system performance. In forward error correction, the transmitter sends
redundant bits, along with the message bits, through a channel. When the
receiver accepts the transmitted signal, it uses the redundancy bits to detect
and correct errors that the channel may have introduced.

This section of the design workflow adds a convolutional encoder and a
Viterbi decoder to the communication system. This communications system
uses hard-decision Viterbi decoding. In hard-decision Viterbi decoding, the
demodulator maps the received signal to bits, and then passes the bits to the
Viterbi decoder for error correction.

In this iteration of the design workflow, the MATLAB file you use starts from
where the one in the previous section ended. This file adds two additional
System objects to the communications system, comm.ConvolutionalEncoder
and comm.ViterbiDecoder. The overall structure of the code doesn’t change;
it simply contains additional functionality.

1 Access the BERTool application.

2 Clear the Plot check boxes for the two plots BERTool generated in the
previous step.

3 Click Theoretical.

4 Enter 0:7 for the EbNo range.

5 Select Convolutional for the Channel Coding.

6 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the
received signal to bits, and then passes the bits to the Viterbi decoder for
error correction.

2-74

QPSK and OFDM with MATLAB System Objects

7 Click Plot.

The BERTool application generates the theoretical BER curve.

8 Click Monte Carlo.

9 Enter 0:7 for the EbNo range.

10 Enter 200 for the Number of errors.

11 Enter 1e7 for the Number of bits.

12 Click the Browse button.

13 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_m.m and click Open.

14 Click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-75

2 System Simulation

Improve results using soft-decision decoding
Use soft-decision decoding to improve BER performance. The previous
section of this workflow uses hard-decision demodulation and hard-decision
Viterbi decoding – processes that map symbols to bits. This section of the
workflow uses soft-decision demodulation and soft-decision Viterbi decoding.
In soft-decision demodulation, the received symbols are not mapped to bits.

2-76

QPSK and OFDM with MATLAB System Objects

Instead, the symbols are mapped to log-likelihood ratios. When the Viterbi
decoder processes log-likelihood ratios (LLR), the BER performance of the
system improves.

1 Access the BERTool application.

2 Clear the Plot check boxes for the two plots BERTool generated in the
previous step.

3 Click Theoretical.

4 Enter 0:5 for the EbNo range.

5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the
received signal to log likelihood ratios, improving BER performance results.

6 Click Plot.

The BERTool application generates the theoretical BER curve.

7 Click Monte Carlo.

8 Enter 0:5 for the EbNo range.

9 Enter 200 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button.

12 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_soft_m.m and click Run.

BERTool runs the simulation and generates the actual simulated points along
the BER curve. Compare the simulation BER curve with the theoretical
BER curve.

2-77

2 System Simulation

When you plot the soft-decision theoretical curve, you will observe BER curve
improvements of about 2 dB relative to the hard-decision decoding. Notice
that the simulation results also reflects a similar BER improvement.

2-78

QPSK and OFDM with MATLAB System Objects

Use turbo coding to improve BER performance
Turbo codes substantially improve BER performance over soft-decision
Viterbi decoding. Turbo coding uses two convolutional encoders in parallel at
the transmitter and two a posteriori probability (APP) decoders in series at
the receiver. This example uses a rate 1/3 turbo coder. For each input bit,
the output has 1 systematic bit and 2 parity bits, for a total of three bits.
Turbo coders achieve a specified BER at much lower SNR values than do
convolutional encoders. As a result, this iteration uses a lower range of Eb/N0
values than the previous section.

1 Access the BERTool application.

2 Click the Monte Carlo tab.

3 Enter 0:0.2:1.2 for the EbNo range.

4 Enter 200 for the Number of errors.

5 Enter 1e7 for the Number of bits.

6 Click the Browse button.

7 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_zTurbo_soft_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve.

2-79

2 System Simulation

Apply a Rayleigh channel model
The previous design iterations model narrowband communications systems
that can be adequately represented using an AWGN channel. However,
high data rate communications systems require a wideband channel. Many
wireless wideband communications channels (4G LTE, WiFi, etc.) are
highly susceptible to the effects of multipath propagation, which introduces

2-80

QPSK and OFDM with MATLAB System Objects

intersymbol interference (ISI). Therefore, you must model those wideband
channels as multipath fading channels. This iteration of the design workflow
uses a multipath fading Rayleigh channel, which assumes no direct
line-of-sight between the transmitter and receiver.

1 Access the BERTool application.

2 Clear the Plot check box for the plot BERTool generated in the previous step.

3 Click Monte Carlo.

4 Enter 0:9 for the EbNo range.

5 Enter 200 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-81

2 System Simulation

In the presence of multipath fading, the BER performance reduces to that of
a binary channel with a consistent value of one-half. To correct the effect of
multipath fading, you must add equalization to the communications system.

2-82

QPSK and OFDM with MATLAB System Objects

Use OFDM-based equalization to correct multipath
fading
Use orthogonal frequency-division multiplexing (OFDM) to compensate for
the multipath fading effect introduced by the Rayleigh fading channel. OFDM
transmission schemes provides an effective way to perform frequency domain
equalization. This design iteration introduces an OFDM transmitter, an
OFDM receiver, and a frequency domain equalizer to the communications
system. The comm.OFDMModulator and comm.OFDMDemodulator System
objects are added in this phase of the example.

1 Access the BERTool application.

2 Clear the Plot check boxes for the simulation plot generated in the previous
step.

3 Click the Monte Carlo tab.

4 Enter 0:9 for the EbNo range.

5 Enter 6000 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_Rayleigh_OFDM_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve.

2-83

2 System Simulation

Use multiple antennas to further improve system
performance
Simultaneously transmitting copies of a signal using multiple antennas
can significantly increase the likelihood that the receiver correctly recovers
the transmitted signal. This phenomenon is known as transmit diversity.

2-84

QPSK and OFDM with MATLAB System Objects

However, this performance improvement comes at the expense of introducing
additional computational complexity in the receiver.

1 Access the BERTool application.

2 Clear the Plot check box to clear the simulation plot generated in the
previous step.

3 Click the Monte Carlo tab.

4 Enter 0:9 for the EbNo range.

5 Enter 1000 for the Number of errors.

6 Enter 1e7 for the Number of bits.

7 Click the Browse button.

8 Navigate to matlab/help/toolbox/comm/examples, select
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the theoretical BER curve.

2-85

2 System Simulation

Accelerate the simulation using MATLAB Coder
All of the functions and System objects that this design iteration workflow
uses support C code generation. If you have a MATLAB Coder license, you
can accelerate simulation speed by generating a .mex file using the codegen
command.

2-86

QPSK and OFDM with MATLAB System Objects

1 Copy the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m file to a
folder that is not on the MATLAB path. For example, C:\Temp.

2 Change your working directory to the folder you just created.

3 Execute the following commands to set a numerical value for each of the input
arguments in the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m
function. For example:

EbNo=1;
MaxNumErrs=200;
MaxNumBits=1e7;

4 Execute the codegen command to generate the executable MATLAB file.

codegen -args {EbNo,MaxNumErrs,MaxNumBits}
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m

5 The file extension of the MATLAB executable file that gets generated
depends upon your operating system. For example, on 64–bit Windows
the file extension will be .mexw64, and the full file name will be
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m_mex.mexw64.

If you run the mex file you just generated in BERTool, you will obtain the
simulation results more quickly.

6 Access the BERTool application.

7 Click the Monte Carlo tab.

8 Enter 0:9 for the EbNo range.

9 Enter 700 for the Number of errors.

10 Enter 1e7 for the Number of bits.

11 Click the Browse button, and select All Files.

Navigate to folder you created in step 1 and click Run.

BERTool runs the simulation and generates simulated points along the BER
curve. Compare the simulation BER curve with the previous curve. Any

2-87

2 System Simulation

variation in the BER curve of the mex file and the MATLAB file from which
it was generated is related to the seed of the random number generator and
is statistically insignificant. In this example, BERTool generates the curve
much more quickly when you use MATLAB Coder to generate C code. Notice
that BERTool generates similar BER results in about 1/4 of the time that it
took for the original simulation took to complete.

2-88

Accelerating BER Simulations Using the Parallel Computing Toolbox

Accelerating BER Simulations Using the Parallel Computing
Toolbox

This example shows how to use the Parallel Computing Toolbox™ to
accelerate a simple, QPSK bit error rate (BER) simulation. The system
consists of a QPSK modulator, a QPSK demodulator, an AWGN channel, and
a bit error rate counter. In this example, four parallel processors are used.

Set the simulation parameters.

EbNoVec = 5:8; % Eb/No values in dB
totalErrors = 200; % Number of bit errors needed for each Eb/No value
totalBits = 1e7; % Total number of bits transmitted for each Eb/No value

Allocate memory to the arrays used to store the data generated by the
function, doc_fcn_qpsk_sim_with_awgn.

[numErrors, numBits] = deal(zeros(length(EbNoVec),1));

Run the simulation and determine the execution time. Only one processor
will be used to determine baseline performance. Accordingly, observe that the
normal for-loop is employed.

tic

for idx = 1:length(EbNoVec)
errorStats = doc_fcn_qpsk_sim_with_awgn(EbNoVec, idx, ...

totalErrors, totalBits);
numErrors(idx) = errorStats(idx,2);
numBits(idx) = errorStats(idx,3);

end

simBaselineTime = toc;

Calculate the BER.

ber1 = numErrors ./ numBits;

Rerun the simulation for the case in which the Parallel Computing Toolbox is
available. Create a pool of workers.

2-89

2 System Simulation

pool = gcp;

Starting parallel pool (parpool) using the 'local' profile ... connected to

Determine the number of available workers from the NumWorkers property of
pool. The simulation runs the range of Eb/N0 values over each worker rather
than assigning a single Eb/N0 point to each worker as the former method
provides the biggest performance improvement.

numWorkers = pool.NumWorkers;

Determine the length of EbNoVec for use in the nested parfor loop. For proper
variable classification, the range of a for-loop nested in a parfor must be
defined by constant numbers or variables.

lenEbNoVec = length(EbNoVec);

Allocate memory to the arrays used to store the data generated by the
function, doc_fcn_qpsk_sim_with_awgn.

[numErrors, numBits] = deal(zeros(length(EbNoVec),numWorkers));

Run the simulation and determine the execution time.

tic

parfor n = 1:numWorkers

for idx = 1:lenEbNoVec
errorStats = doc_fcn_qpsk_sim_with_awgn(EbNoVec, idx, ...

totalErrors/numWorkers, totalBits/numWorkers);
numErrors(idx,n) = errorStats(idx,2);
numBits(idx,n) = errorStats(idx,3);

end

end

simParallelTime = toc;

Calculate the BER. In this case, the results from multiple processors must be
combined to generate the aggregate BER.

2-90

Accelerating BER Simulations Using the Parallel Computing Toolbox

ber2 = sum(numErrors,2) ./ sum(numBits,2);

Compare the BER values to verify that the same results are obtained
independent of the number of workers.

semilogy(EbNoVec',ber1,'-*',EbNoVec',ber2,'-^')
legend('Single Processor','Multiple Processors','location','best')
xlabel('Eb/No (dB)')
ylabel('BER')
grid

You can see that the BER curves are essentially the same with any variance
being due to differing random number seeds.

2-91

2 System Simulation

Compare the execution times for each method.

fprintf(['\nSimulation time = %4.1f sec for one worker\n', ...
'Simulation time = %4.1f sec for multiple workers\n'], ...
simBaselineTime, simParallelTime)

Simulation time = 170.1 sec for one worker
Simulation time = 52.7 sec for multiple workers

In this case where four processor cores were used, the speed improvement
factor was approximately four.

2-92

3

Visualization and
Measurements

• “Scatter Plot and Eye Diagram with MATLAB” on page 3-2

• “Scatter Plot and Eye Diagram with MATLAB” on page 3-8

• “EVM and MER Measurements with Simulink” on page 3-14

• “ACPR and CCDF Measurements with MATLAB” on page 3-22

3 Visualization and Measurements

Scatter Plot and Eye Diagram with MATLAB
This example shows how to use the Communication System Toolbox to
visualize signal behavior through the use of eye diagrams and scatter plots.
The example uses a QPSK signal which is passed through a square-root,
raised cosine filter.

Set the RRC filter parameters.

span = 10; % Filter span
rolloff = 0.2; % Rolloff factor
sps = 8; % Samples per symbol

Create the filter coefficients using the rcosdesign function.

filtCoeff = rcosdesign(rolloff, span, sps);

Generate random symbols for an alphabet size of 4.

rng('default')
data = randi([0 3],5000,1);

Apply QPSK modulation.

dataMod = pskmod(data, 4, pi/4);

Filter the modulated data.

txSig = upfirdn(dataMod,filtCoeff, sps);

Calculate the SNR for an oversampled QPSK signal.

EbNo = 20;
snr = EbNo + 10*log10(2) - 10*log10(sps);

Add noise to the transmitted signal.

rxSig = awgn(txSig,snr,'measured');

Apply the RRC receive filter.

rxSigFilt = upfirdn(rxSig, filtCoeff, 1, sps);

3-2

Scatter Plot and Eye Diagram with MATLAB

Demodulate the filtered signal.

% Demodulate the filtered signal.
dataOut = pskdemod(rxSigFilt, 4, pi/4, 'gray');

Use the scatterplot function to show scatter plots of the signal before and
after filtering. You can see that the receive filter improves performance
as the constellation more closely matches the ideal values. The first span
symbols and the last span symbols represent the cumulative delay of the
two filtering operations and are removed from rxSigFilt before generating
the scatter plot.

h = scatterplot(sqrt(sps) * txSig(sps*span+1:end-sps*span), sps, 0, 'g.');
hold on
scatterplot(rxSigFilt(span+1:end-span), 1, 0, 'kx', h)
scatterplot(dataMod, 1, 0, 'r*', h)
legend('Transmit Signal','Received Signal','Ideal','location','best')

3-3

3 Visualization and Measurements

Display the eye diagram for two symbol periods.

eyediagram(txSig(sps*span+1:end-sps*span), 2*sps)

3-4

Scatter Plot and Eye Diagram with MATLAB

Change the rolloff factor to visualize its effect on the eye diagram as its value
is increased.

rolloff = 0.5;

3-5

3 Visualization and Measurements

Generate new filter coefficients.

filtCoeff = rcosdesign(rolloff, span, sps);

Apply the RRC filter.

txSig = upfirdn(dataMod,filtCoeff, sps);

Display the eye diagram. You can see that the eye is more "open" when the
filter rolloff factor is increased.

eyediagram(txSig(sps*span+1:end-sps*span), 2*sps, 1, 0, 'r')

3-6

Scatter Plot and Eye Diagram with MATLAB

3-7

3 Visualization and Measurements

Scatter Plot and Eye Diagram with MATLAB
This example shows how to use the Communication System Toolbox to
visualize signal behavior through the use of eye diagrams and scatter plots.
The example uses a QPSK signal which is passed through a square-root,
raised cosine filter.

Scatter Plot

Set the RRC filter parameters.

span = 10; % Filter span
rolloff = 0.2; % Rolloff factor
sps = 8; % Samples per symbol

Create the filter coefficients using the rcosdesign function.

filtCoeff = rcosdesign(rolloff, span, sps);

Generate random symbols for an alphabet size of 4.

rng('default')
data = randi([0 3],5000,1);

Apply QPSK modulation.

dataMod = pskmod(data, 4, pi/4);

Filter the modulated data.

txSig = upfirdn(dataMod,filtCoeff, sps);

Calculate the SNR for an oversampled QPSK signal.

EbNo = 20;
snr = EbNo + 10*log10(2) - 10*log10(sps);

Add AWGN to the transmitted signal.

rxSig = awgn(txSig,snr,'measured');

3-8

Scatter Plot and Eye Diagram with MATLAB

Apply the RRC receive filter.

rxSigFilt = upfirdn(rxSig, filtCoeff, 1, sps);

Demodulate the filtered signal.

dataOut = pskdemod(rxSigFilt, 4, pi/4, 'gray');

Use the scatterplot function to show scatter plots of the signal before and
after filtering. You can see that the receive filter improves performance
as the constellation more closely matches the ideal values. The first span
symbols and the last span symbols represent the cummulative delay of the
two filtering operations and are removed from the two filtered signals before
generating the scatter plots.

h = scatterplot(sqrt(sps) * txSig(sps*span+1:end-sps*span), sps, 0, 'g.');
hold on
scatterplot(rxSigFilt(span+1:end-span), 1, 0, 'kx', h)
scatterplot(dataMod, 1, 0, 'r*', h)
legend('Transmit Signal','Received Signal','Ideal','location','best')

3-9

3 Visualization and Measurements

Eye Diagram

Display the eye diagram for two symbol periods.

eyediagram(txSig(sps*span+1:end-sps*span), 2*sps)

3-10

Scatter Plot and Eye Diagram with MATLAB

Change the rolloff factor to visualize its effect on the eye diagram as its value
is increased.

rolloff = 0.5;

3-11

3 Visualization and Measurements

Generate new filter coefficients.

filtCoeff = rcosdesign(rolloff, span, sps);

Apply the RRC filter.

txSig = upfirdn(dataMod,filtCoeff, sps);

Display the eye diagram. You can see that the eye is more "open" when the
filter rolloff factor is increased.

eyediagram(txSig(sps*span+1:end-sps*span), 2*sps, 1, 0, 'r')

3-12

Scatter Plot and Eye Diagram with MATLAB

3-13

3 Visualization and Measurements

EVM and MER Measurements with Simulink
This model shows how error vector magnitude (EVM) and modulation error
rate (MER) measurements are made using Simulink blocks.

Load the model doc_mer_and_evm from the MATLAB command prompt.

doc_mer_and_evm

This example includes:

• A 16-QAM modulated signal

• An I/Q imbalance

• A constellation diagram block

• EVM Measurement and MER Measurement blocks

The model applies an I/Q imbalance to a QAM-modulated signal at which
point MER and EVM measurements are made. The constellation diagram
provides a visual representation of the effects the imbalance has on the
modulation performance indicators.

3-14

EVM and MER Measurements with Simulink

3-15

3 Visualization and Measurements

The I/Q Imbalance block is set to that the I/Q amplitude imbalance (dB) is
set to 1 and the I/Q phase imbalance (deg) is set to 15.

The MER Measurement block is set so that it outputs the X-percentile MER
value which is set to 90%.

3-16

EVM and MER Measurements with Simulink

The EVM Measurement block is set to output the maximum and 75th
percentile EVM values.

3-17

3 Visualization and Measurements

Run the model.

3-18

EVM and MER Measurements with Simulink

You can see that I/Q amplitude and phase imbalance has shifted the
constellation diagram so that each symbol is not exactly equal to its reference
symbol (shown in red). Change the I/Q Imbalance block to see the effects of
differing imbalances on the constellation diagram.

Observe the EVM and MER values. For the default configuration of the
model, the mean MER is approximately 16.9 dB and the 90th percentile MER
is 13.9 dB. The RMS EVM is, approximately, 14.3%, the maximum EVM is
20.4%, and the 75th percentile EVM is 17.7%.

3-19

3 Visualization and Measurements

Change the I/Q amplitude imbalance (dB) value in the I/Q Imbalance block
to 2 dB. You can see that the all the MER and EVM metrics degrade.

3-20

EVM and MER Measurements with Simulink

3-21

3 Visualization and Measurements

ACPR and CCDF Measurements with MATLAB

In this section...

“ACPR Measurements” on page 3-22

“CCDF Measurements” on page 3-26

ACPR Measurements
This example shows how to measure the adjacent channel power ratio (ACPR)
from a baseband, 50 kbps QPSK signal. ACPR is the ratio of signal power
measured in an adjacent frequency band to the power from the same signal
measured in its main band. The number of samples per symbol is set to four.

Set the random number generator so that results are repeatable.

prevState = rng;
rng(577)

Set the samples per symbol (sps) and channel bandwidth (bw) parameters.

sps = 4;
bw = 50e3;

Generate 10,000 4-ary symbols for QSPK modulation.

data = randi([0, 3],10000,1);

Construct a QPSK modulator and then modulate the input data.

hMod = comm.QPSKModulator;
x = step(hMod, data);

Apply rectangular pulse shaping to the modulated signal. This type of
pulse shaping is typically not done in practical system but is used here for
illustrative purposes.

y = rectpulse(x, sps);

3-22

ACPR and CCDF Measurements with MATLAB

Construct an ACPR System object. The sample rate is the bandwidth
multiplied by the number of samples per symbol. The main channel is
assumed to be at 0 while the adjacent channel offset is set to 50 kHz
(identical to the bandwidth of the main channel). Likewise, the measurement
bandwidth of the adjacent channel is set to be the same as the main channel.
Lately, enable the main and adjacent channel power output ports.

hACPR = comm.ACPR('SampleRate',bw*sps,...
'MainChannelFrequency',0,...
'MainMeasurementBandwidth',bw,...
'AdjacentChannelOffset',50e3,...
'AdjacentMeasurementBandwidth',bw,...
'MainChannelPowerOutputPort', true,...
'AdjacentChannelPowerOutputPort',true);

Use the step method of the comm.ACPR System object to output the ACPR, the
main channel power, and the adjacent channel power for the signal, y.

[ACPR, mainPower, adjPower] = step(hACPR, y)

ACPR =

-9.5103

mainPower =

28.9634

adjPower =

19.4531

Change the frequency offset to 75 kHz and determine the ACPR. Since the
AdjacentChannelOffset property is nontunable, you must first release hACPR.
Observe that the ACPR improves when the channel offset is increased.

3-23

3 Visualization and Measurements

release(hACPR)
hACPR.AdjacentChannelOffset = 75e3;
ACPR = step(hACPR, y)

ACPR =

-13.2317

Reset hACPR and specify a 50 kHz adjacent channel offset.

release(hACPR)
hACPR.AdjacentChannelOffset = 50e3;

Create a raised cosine filter and filter the modulated signal.

hFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol', sps);
z = step(hFilt, x);

Measure the ACPR for the filtered signal, z . You can see that the ACPR
improves from -9.5 dB to -17.7 dB when raised cosine pulses are used.

ACPR = step(hACPR, z)

ACPR =

-17.7338

Plot the adjacent channel power ratios for a range of adjacent channel offsets.
Set the channel offsets to range from 30 kHz to 70 kHz in 10 kHz steps. Recall
that you must first release hACPR to change the offset.

freqOffset = 1e3*(30:5:70);
release(hACPR)
hACPR.AdjacentChannelOffset = freqOffset;

Determine the ACPR values for the signals with rectangular and raised
cosine pulse shapes.

3-24

ACPR and CCDF Measurements with MATLAB

ACPR1 = step(hACPR, y);
ACPR2 = step(hACPR, z);

Plot the adjacent channel power ratios.

plot(freqOffset/1000,ACPR1,'*-',freqOffset/1000, ACPR2,'o-')
xlabel('Adjacent Channel Offset (kHz)')
ylabel('ACPR (dB)')
legend('Rectangular','Raised Cosine','location','best')
grid

3-25

3 Visualization and Measurements

Return the random number generator to its initial state.

rng(prevState)

CCDF Measurements
This example shows how to use the Complementary Cumulative Distribution
Function (CCDF) System object to measure the probability of a signal’s
instantaneous power being greater than a specified level over its average
power. Construct the comm.CCDF object, enable the PAPR output port, and
set the maximum signal power limit to 50 dBm.

hCCDF = comm.CCDF('PAPROutputPort',true, ...
'MaximumPowerLimit', 50);

Create a 64-QAM modulator and an OFDM modulator. The QAM modulated
signal will be evaluated by itself and evaluated again after OFDM modulation
is applied.

hMod = comm.RectangularQAMModulator('ModulationOrder',64);
hOFDM = comm.OFDMModulator('FFTLength', 256, 'CyclicPrefixLength', 32);

Determine the input and output sizes of the OFDM modulator object using
the info method of the comm.OFDMModulator object.

info(hOFDM)
ofdmInputSize = hOFDM.info.DataInputSize;
ofdmOutputSize = hOFDM.info.OutputSize;

ans =

DataInputSize: [245 1]
OutputSize: [288 1]

Set the number of OFDM frames.

numFrames = 20;

Allocate memory for the signal arrays.

3-26

ACPR and CCDF Measurements with MATLAB

qamSig = repmat(zeros(ofdmInputSize), numFrames, 1);
ofdmSig = repmat(zeros(ofdmOutputSize), numFrames, 1);

Use the default random number generator to ensure repeatability.

rng default

Generate the 64-QAM and OFDM signals for evaluation.

for k = 1:numFrames
% Generate random data symbols
data = randi([0, 63], ofdmInputSize);
% Apply 64-QAM modulation
tmpQAM = step(hMod, data);
% Apply OFDM modulation to the QAM-modulated signal
tmpOFDM = step(hOFDM, tmpQAM);
% Save the signal data
qamSig((1:ofdmInputSize)+(k-1)*ofdmInputSize(1)) = tmpQAM;
ofdmSig((1:ofdmOutputSize)+(k-1)*ofdmOutputSize(1)) = tmpOFDM;

end

Determine the average signal power, the peak signal power, and the PAPR
ratios for the two signals. The two signals being evaluated must be the same
length so the first 4000 symbols are evaluated.

[Fy, Fx, PAPR] = step(hCCDF, [qamSig(1:4000), ...
ofdmSig(1:4000)]);

Plot the CCDF data. Observe that the likelihood of the power of the OFDM
modulated signal being more than 3 dB above its average power level is much
higher than for the QAM modulated signal.

plot(hCCDF)
legend('QAM','OFDM','location','best')

3-27

3 Visualization and Measurements

Compare the PAPR values for the QAM modulated and OFDM modulated
signals.

fprintf('\nPAPR for 64-QAM = %5.2f dB\nPAPR for OFDM = %5.2f dB\n',...
PAPR(1), PAPR(2))

PAPR for 64-QAM = 3.65 dB
PAPR for OFDM = 9.44 dB

3-28

ACPR and CCDF Measurements with MATLAB

You can see that by applying OFDM modulation to a 64-QAM modulated
signal, the PAPR increases by 5.8 dB. This means that if 30 dBm transmit
power is needed to close a 64-QAM link, the power amplifier needs to have a
maximum power of 33.7 dBm to ensure linear operation. If the same signal
were then OFDM modulated, a 39.5 dBm power amplifier is required.

3-29

3 Visualization and Measurements

3-30

4

System Objects

• “What Is a System Toolbox?” on page 4-2

• “What Are System Objects?” on page 4-3

• “When to Use System Objects Instead of MATLAB Functions” on page 4-5

• “System Design and Simulation in MATLAB” on page 4-8

• “System Design and Simulation in Simulink” on page 4-9

• “System Objects in MATLAB Code Generation” on page 4-10

• “System Objects in Simulink” on page 4-17

• “System Object Methods” on page 4-18

• “System Design in MATLAB Using System Objects” on page 4-21

• “System Design in Simulink Using System Objects” on page 4-28

4 System Objects

What Is a System Toolbox?
System Toolbox products provide algorithms and tools for designing,
simulating, and deploying dynamic systems in MATLAB and Simulink. These
toolboxes contain MATLAB functions, System objects, and Simulink blocks
that deliver the same design and verification capabilities across MATLAB
and Simulink, enabling more effective collaboration among system designers.
Available System Toolbox products include:

• DSP System Toolbox

• Communications System Toolbox

• Computer Vision System Toolbox

• Phased Array System Toolbox

System Toolboxes support floating-point and fixed-point streaming data
simulation for both sample- and frame-based data. They provide a
programming environment for defining and executing code for various aspects
of a system, such as initialization and reset. System Toolboxes also support
code generation for a range of system development tasks and workflows,
such as:

• Rapid development of reusable IP and test benches

• Sharing of component libraries and systems models across teams

• Large system simulation

• C-code generation for embedded processors

• Finite wordlength effects modeling and optimization

• Ability to prototype and test on real-time hardware

4-2

What Are System Objects?

What Are System Objects?
A System object is a specialized kind of MATLAB object. System Toolboxes
include System objects and most System Toolboxes also have MATLAB
functions and Simulink blocks. System objects are designed specifically for
implementing and simulating dynamic systems with inputs that change over
time. Many signal processing, communications, and controls systems are
dynamic. In a dynamic system, the values of the output signals depend on
both the instantaneous values of the input signals and on the past behavior of
the system. System objects use internal states to store that past behavior,
which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such
as video and audio processing systems.

For example, you could use System objects in a system that reads data from
a file, filters that data and then writes the filtered output to another file.
Typically, a specified amount of data is passed to the filter in each loop
iteration. The file reader object uses a state to keep track of where in the file
to begin the next data read. Likewise, the file writer object keeps tracks of
where it last wrote data to the output file so that data is not overwritten. The
filter object maintains its own internal states to assure that the filtering is
performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)

• C code generation (requires a MATLAB Coder or Simulink Coder license)

• HDL code generation (requires an HDL Coder™ license)

• Executable files or shared libraries generation (requires a MATLAB
Compiler™ license)

4-3

4 System Objects

Note Check your product documentation to confirm fixed-point, code
generation, and MATLAB Compiler support for the specific System objects
you want to use.

In addition to the System objects provided with System Toolboxes, you can
also create your own System objects. See “Define New System Objects”.

4-4

When to Use System Objects Instead of MATLAB Functions

When to Use System Objects Instead of MATLAB Functions

In this section...

“System Objects vs. MATLAB Functions” on page 4-5

“Process Audio Data Using Only MATLAB Functions Code” on page 4-5

“Process Audio Data Using System Objects” on page 4-6

System Objects vs. MATLAB Functions
Many System objects have MATLAB function counterparts. For simple,
one-time computations use MATLAB functions. However, if you need to
design and simulate a system with many components, use System objects.
Using System objects is also appropriate if your computations require
managing internal states, have inputs that change over time or process large
streams of data.

Building a dynamic system with different execution phases and internal
states using only MATLAB functions would require complex programming.
You would need code to initialize the system, validate data, manage internal
states, and reset and terminate the system. System objects perform many of
these managerial operations automatically during execution. By combining
System objects in a program with other MATLAB functions, your can
streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions
Code
This example shows how to write MATLAB function-only code for reading
audio data.

The code reads audio data from a file, filters it, and then plays the filtered
audio data. The audio data is read in frames. This code produces the same
result as the System objects code in the next example, allowing you to
compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

4-5

4 System Objects

Obtain the total number of samples and the sampling rate from the source file.

audioInfo = audioinfo(fname);
maxSamples = audioInfo.TotalSamples;
fs = audioInfo.SampleRate;

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the
while loop index.

frameSize = 1024;
nIdx = 1;

Define the while loop to process the audio data.

while nIdx <= maxSamples(1)-frameSize+1
audio = audioread(fname,[nIdx nIdx+frameSize-1]);
[y,z] = filter(b,1,audio,z);
sound(y,fs);
nIdx = nIdx+frameSize;

end

The loop uses explicit indexing and state management, which can be a tedious
and error-prone approach. You must have detailed knowledge of the states,
such as, sizes and data types. Another issue with this MATLAB-only code is
that the sound function is not designed to run in real time. The resulting
audio is very choppy and barely audible.

Process Audio Data Using System Objects
This example shows how to write System objects code for reading audio data.

4-6

When to Use System Objects Instead of MATLAB Functions

The code uses System objects from the DSP System Toolbox software to read
audio data from a file, filter it, and then play the filtered audio data. This code
produces the same result as the MATLAB code shown previously, allowing
you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)
audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

This System objects code avoids the issues present in the MATLAB-only code.
Without requiring explicit indexing, the file reader object manages the data
frame sizes while the filter manages the states. The audio player object plays
each audio frame as it is processed.

4-7

4 System Objects

System Design and Simulation in MATLAB
System objects allow you to design and simulate your system in MATLAB.
You use System objects in MATLAB as shown in this diagram.

1 Create individual components — Create the System objects to use in
your system. See “Create Components for Your System” on page 4-21
for information. In addition to the System objects provided with System
Toolboxes, you can also create your own System objects. See “Define New
System Objects”.

2 Configure components — If necessary, change the objects’ property values
to model your particular system. All System object properties have default
values that you may be able to use without changing them. See “Configure
Components for Your System” on page 4-22 for information.

3 Assemble components into system — Write a MATLAB program that
includes those System objects, connecting them using MATLAB variable as
inputs and outputs to simulate your system. See “Assemble Components to
Create Your System” on page 4-23 for information.

4 Run the system — Run your program, which uses the step method to
run your system’s System objects. You can change tunable properties
while your system is running. See “Run Your System” on page 4-25 and
“Reconfigure Your System During Runtime” on page 4-25 for information.

4-8

System Design and Simulation in Simulink

System Design and Simulation in Simulink
You can use System objects in your model to simulate in Simulink.

1 Create a System object to be used in your model. See “Define New Kinds of
System Objects for Use in Simulink” on page 4-28 for information.

2 Test your new System object in MATLAB. See “Test New System Objects
in MATLAB” on page 4-34

3 Add the System object to your model using the MATLAB System block. See
“Add System Objects to Your Simulink Model” on page 4-35 for information.

4 Add other Simulink blocks as needed and connect the blocks to construct
your system.

5 Run the system

4-9

4 System Objects

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 4-10

“System Objects in codegen” on page 4-16

“System Objects in the MATLAB Function Block” on page 4-16

“System Objects in the MATLAB System Block” on page 4-16

“System Objects and MATLAB® Compiler™ Software” on page 4-16

System Objects in Generated Code
You can generate C/C++ code in MATLAB from your system that contains
System objects by using the MATLAB Coder product. Using this product,
you can generate efficient and compact code for deployment in desktop and
embedded systems and accelerate fixed-point algorithms. You do not need the
MATLAB Coder product to generate code in Simulink.

Note Most, but not all, System objects support code generation. Refer to the
particular object’s reference page for information.

System Objects Code with Persistent Objects for Code
Generation
This example shows how to use System objects to make MATLAB code suitable
for code generation. The example highlights key factors to consider, such as
passing property values and using extrinsic functions. It also shows that by
using persistent objects, the object states are maintained between calls.

function w = lmssystem(x, d)
% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter
%#codegen

% Declare System objects as persistent
persistent hlms;

4-10

System Objects in MATLAB Code Generation

% Initialize persistent System objects only once.
% Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

if isempty(hlms)
% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = dsp.LMSFilter(11,'StepSize',0.01);
end

[~,~,w] = step(hlms,x,d); % Filter weights
end

This example shows how to compile the lmssystem function and produce a
MEX file with the same name in the current directory.

% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter

coefs = fir1(10,.25);
hfilt = dsp.FIRFilter('Numerator', coefs);

x = randn(1000,1); % Input signal
hSrc = dsp.SignalSource(x,100); % Use x as input-signal with

% 100 samples per frame

% Generate code for lmssystem
codegen lmssystem -args {ones(100,1),ones(100,1)}

while ~isDone(hSrc)
in = step(hSrc);
d = step(hfilt,in) + 0.01*randn(100,1); % Desired signal
w = lmssystem_mex(in,d); % Call generated mex file
stem([coefs.',w]);

end

4-11

4 System Objects

For another detailed code generation example, see “Generate Code for
MATLAB Handle Classes and System Objects” in the MATLAB Coder product
documentation.

System Objects Code Without Persistent Objects for Code
Generation
The following example, using System objects, does not use the persistent
keyword because calling a persistent object with different data types causes
a data type mismatch error. This example filters the input and then
performs a discrete cosine transform on the filtered output. Each call to
the FilterAndDCTLib function is independent and state information is not
retained between calls.

function [out] = FilterAndDCTLib(in)
hFIR = dsp.FIRFilter('Numerator',fir1(10,0.5));
DCT = dsp.DCT;

% Run the objects to get the filtered spectrum
firOut = hFIR.step(in);
out = hDCT.step(firOut);

function [out1, out2] = CompareRealInt(in1)
% Call the library function, FilterAndDCTLib, which can
% generate code for multiple calls each with a different data type.

% Convert input data from double to int16
in2 = int16(in1);

% Call the library function for both data types, double and int16
out1 = FilterAndDCTLib(in1);
out2 = FilterAndDCTLib(in2);

function RunDCTExample
% Execute everything needed at the command line to run the example

warnState = warning('off','SimulinkFixedPoint:util:fxpParameterUnderflow

4-12

System Objects in MATLAB Code Generation

% Create vector, length 256, of data containing noise and sinusoids
dataLength = 256;
sampleData = rand(dataLength,1) + 3*sin(2*pi*[1:dataLength]*.085)' ...

+ 2*cos(2*pi*[1:dataLength]*.02)';

% Generate code and run generated file
codegen CompareRealInt -args {sampleData}
[out1,out2] = CompareRealInt_mex(sampleData);

% Compare the the floating point results, in blue
% with the int16 results, in red
plot(out1,'b');
hold on;
plot(out2,'r');
hold off

warning(warnState.state,warnState.identifier);
end

Usage Rules and Limitations for System Objects in Generated
MATLAB Code
The following usage rules and limitations apply to using System objects in
code generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.

• You cannot initialize System objects properties with other MATLAB class
objects as default values in code generation. You must initialize these
properties in the constructor.

Inputs and Outputs

• The data type of the inputs should not change.

4-13

4 System Objects

• If you want the size of inputs to change, verify that variable-size is enabled.
Code generation support for variable-size data also requires that the Enable
variable sizing option is enabled, which is the default in MATLAB.

Note Variable-size properties in MATLAB Function block in
Simulink are not supported. System objects predefined in the
software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function
block.

• Do not use the Save and Restore Simulation State as SimState option for
any System object in a MATLAB Function block.

• Do not pass a System object as an example input argument to a function
being compiled with codegen.

• Do not pass a System object to functions declared as extrinsic (functions
called in interpreted mode) using the coder.extrinsic function. System
objects returned from extrinsic functions and scope System objects that
automatically become extrinsic can be used as inputs to another extrinsic
function, but do not generate code.

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there
can be at most one assignment to that property (including the assignment
in the constructor).

• For most System objects, the only time you can set their nontunable
properties during code generation is when you construct the objects.

- For System objects that are predefined in the software, you can set their
tunable properties at construction time or using dot notation after the
object is locked.

- For System objects that you define, you can change their tunable
properties at construction time or using dot notation during code
generation.

4-14

System Objects in MATLAB Code Generation

• Objects cannot be used as default values for properties.

• In MATLAB simulations, default values are shared across all instances of
an object. Two instances of a class can access the same default value if that
property has not been overwritten by either instance.

Cell Arrays and Global Variables

• Do not use cell arrays.

• Global variables are not supported. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object.
For example:

f = coder.MEXConfig;
f.GlobalSyncMethod='NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

- get

- getNumInputs

- getNumOutputs

- isDone (for sources only)

- release

- reset

- set (for tunable properties)

- step

• Code generation support for using dot notation depends on whether the
System object is predefined in the software or is one that you defined.

- For System objects that are predefined in the software, you cannot use
dot notation to call methods.

4-15

4 System Objects

- For System objects that you define, you can use dot notation or function
call notation, with the System object as first argument, to call methods.

System Objects in codegen
You can include System objects in MATLAB code in the same way you
include any other elements. You can then compile a MEX file from your
MATLAB code by using the codegen command, which is available if you have
a MATLAB Coder license. This compilation process, which involves a number
of optimizations, is useful for accelerating simulations. See “Getting Started
with MATLAB Coder” and “MATLAB Classes” for more information.

Note Most, but not all, System objects support code generation. Refer to the
particular object’s reference page for information.

System Objects in the MATLAB Function Block
Using the MATLAB Function block, you can include any System object and
any MATLAB language function in a Simulink model. This model can then
generate embeddable code. System objects provide higher-level algorithms for
code generation than do most associated blocks. For more information, see
“What Is a MATLAB Function Block?” in the Simulink documentation.

System Objects in the MATLAB System Block
Using the MATLAB System block, you can include in a Simulink model
individual System objects that you create with a class definition file . The
model can then generate embeddable code. For more information, see “What
Is the MATLAB System Block?” in the Simulink documentation.

System Objects and MATLAB Compiler Software
MATLAB Compiler software supports System objects for use inside MATLAB
functions. The compiler product does not support System objects for use in
MATLAB scripts.

4-16

System Objects in Simulink

System Objects in Simulink

In this section...

“System Objects in the MATLAB Function Block” on page 4-17

“System Objects in the MATLAB System Block” on page 4-17

System Objects in the MATLAB Function Block
You can include System object code in Simulink models using the MATLAB
Function block. Your function can include one or more System objects.
Portions of your system may be easier to implement in the MATLAB
environment than directly in Simulink. Many System objects have Simulink
block counterparts with equivalent functionality. Before writing MATLAB
code to include in a Simulink model, check for existing blocks that perform
the desired operation.

System Objects in the MATLAB System Block
You can include individual System objects that you create with a class
definition file into Simulink using the MATLAB System block. This provides
one way to add your own algorithm blocks into your Simulink models. For
information, see “System Object Integration” in the Simulink documentation.

4-17

4 System Objects

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-18

“The Step Method” on page 4-18

“Common Methods” on page 4-19

What Are System Object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using
methods is <method>(<handle>), such as step(H), plus possible extra input
arguments.

System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.

4-18

System Object Methods

For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 4-19.

Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

Method Description

step Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. For System objects, use the release
method instead of a destructor.

reset Resets the internal states of the object to the initial
values for that object

getNumInputs Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

4-19

4 System Objects

Method Description

getDiscreteState Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method
on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same
property values

isLocked Returns a logical value indicating whether the object
is locked.

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached
the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

info Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

4-20

System Design in MATLAB Using System Objects

System Design in MATLAB Using System Objects

In this section...

“Create Components for Your System” on page 4-21

“Configure Components for Your System” on page 4-22

“Assemble Components to Create Your System” on page 4-23

“Run Your System” on page 4-25

“Reconfigure Your System During Runtime” on page 4-25

Create Components for Your System
This example shows how to create components for a system that processes
a long stream of audio data. The data is read from a file, filtered, and then
played.

A System object is a component you can use to create your system in
MATLAB. System objects support fixed- or variable-size data. Variable-size
data is data whose size can change at run time. By contrast, fixed-size data
is data whose size is known and locked at initialization time, and therefore,
cannot change at run time.

Many System objects are predefined in the software. You can also create your
own System objects (see “Define New System Objects”).

The particular predefined components you need are:

• dsp.AudioFileReader — Read the file of audio data

• dsp.FIRFilter — Filter the audio data

• dsp.AudioPlayer — Play the filtered audio data

First, you create the component objects, using default property settings:

audioIn = dsp.AudioFileReader;
filtLP = dsp.FIRFilter;
audioOut = dsp.AudioPlayer;

4-21

4 System Objects

Next, you configure each System object for your system. See “Configure
Components for Your System” on page 4-22. Alternately, if desired, you can
“Create and Configure Components at the Same Time” on page 4-23.

Configure Components for Your System

When to Configure Components
If you did not set an object’s properties when you created it and do not
want to use default values, you must explicitly set those properties. Some
properties allow you to change their values while your system is running. See
“Reconfigure Your System During Runtime” on page 4-25 for information.

Most properties are independent of each other. However, some System object
properties enable or disable another property or limit the values of another
property. To avoid errors or warnings, you should set the controlling property
before setting the dependent property.

Display Component Property Values
To display the current property values for an object, type that object’s handle
name at the command line (such as audioIn). To display the value of a specific
property, type objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values
This example shows how to configure the components for your system by
setting the component objects’ properties.

Use this procedure if you have created your components as described in
“Create Components for Your System” on page 4-21. If you have not yet
created your components, use the procedure in “Create and Configure
Components at the Same Time” on page 4-23

For the file reader object, specify the file to read and set the output data type.

audioIn.Filename = 'speech_dft_8kHz.wav';
audioIn.OutputDataType = 'single';

4-22

System Design in MATLAB Using System Objects

For the filter object, specify the filter numerator coefficients using the fir1
function, which specifies the lowpass filter order and the cutoff frequency.

filtLP.Numerator = fir1(160,.15);

For the audio player object, specify the sample rate. In this case, use the
same sample rate as the input data.

audioOut.SampleRate = audioIn.SampleRate;

Create and Configure Components at the Same Time
This example shows how to create your System object components and
configure the desired properties at the same time. To avoid errors or warnings
for dependent properties, you should set the controlling property before
setting the dependent property. Use this procedure if you have not already
created your components.

Create the file reader object, specify the file to read, and set the output data
type.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...
'OutputDataType','single')

Create the filter object and specify the filter numerator using the fir1
function. Specify the lowpass filter order and the cutoff frequency of the fir1
function.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Create the audio player object and specify the sample rate. In this case, use
the same sample rate as the input data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

After you create the components, you can assemble them in your system. See
“Assemble Components to Create Your System” on page 4-23.

Assemble Components to Create Your System

• “Connect Inputs and Outputs” on page 4-24

4-23

4 System Objects

• “Code for the Whole System” on page 4-24

Connect Inputs and Outputs
After you have determined the components you need and have created and
configured your System objects, assemble your system. You use the System
objects like other MATLAB variables and include them in MATLAB code. You
can pass MATLAB variables into and out of System objects.

The main difference between using System objects and using functions is
the step method. The step method is the processing command for each
System object and is customized for that specific System object. This method
initializes your objects and controls data flow and state management of your
system. You typically use step within a loop.

You use the output from an object’s step method as the input to another
object’s step method. For some System objects, you can use properties of
those objects to change the number of inputs or outputs. To verify that
the appropriate number of input and outputs are being used, you can use
getNumInputs and getNumOutputs on any System object. For information on
all available System object methods, see “System Object Methods” on page
4-18.

Code for the Whole System
This example shows how to write the full code for reading, filtering, and
playing a file of audio data.

You can type this code on the command line or put it into a program file.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...
'OutputDataType','single');

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));
audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

while ~isDone(audioIn)
audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

4-24

System Design in MATLAB Using System Objects

The while loop uses the isDone method to read through the entire file. The
step method is used on each object inside the loop.

Now, you are ready to run your system. See “Run Your System” on page 4-25.

Run Your System

• “How to Run Your System” on page 4-25

• “What You Cannot Change While Your System Is Running” on page 4-25

How to Run Your System
Run your code either by typing directly at the command line or running a file
containing your program. When you run the code for your system, the step
method instructs each object to process data through that object.

What You Cannot Change While Your System Is Running
The first call to the step method initializes and then locks your object. When
a System object has started processing data, it is locked to prevent changes
that would disrupt its processing. Use the isLocked method to verify whether
an object is locked. When the object is locked, you cannot change:

• Number of inputs or outputs

• Data type of inputs or outputs

• Data type of any tunable property

• Dimensions of inputs or tunable properties, except for System objects that
support variable-size data

• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your
System During Runtime” on page 4-25.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-26

4-25

4 System Objects

• “Change a Tunable Property in Your System” on page 4-26

• “Change Input Complexity or Dimensions” on page 4-26

When Can You Change Component Properties?
When a System object has started processing data, it is locked to prevent
changes that would disrupt its processing. You can use isLocked on any
System object to verify whether it is locked or not. When processing is
complete, you can use the release method to unlock a System object.

Some object properties are tunable, which enables you to change them even
if the object is locked. Unless otherwise specified, System objects properties
are nontunable. Refer to the object’s reference page to determine whether an
individual property is tunable. Typically, tunable properties are not critical to
how the System object processes data.

Change a Tunable Property in Your System
This example shows how to change a tunable property.

You can change the filter type to a high-pass filter as your code is running
by replacing the while loop with the following while loop. The change takes
effect the next time the step method is called (such as at the next iteration of
the while loop).

reset(audioIn); % Reset audio file
filtLP.Numerator = fir1(160,0.15,'high');
while ~isDone(audioIn)

audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

Change Input Complexity or Dimensions
During simulation, some System objects do not allow complex data if the
object was initialized with real data. You cannot change any input complexity
during code generation.

4-26

System Design in MATLAB Using System Objects

You can change the value of a tunable property without a warning or error
being produced. For all other changes at run time, an error occurs.

4-27

4 System Objects

System Design in Simulink Using System Objects

In this section...

“Define New Kinds of System Objects for Use in Simulink” on page 4-28

“Test New System Objects in MATLAB” on page 4-34

“Add System Objects to Your Simulink Model” on page 4-35

Define New Kinds of System Objects for Use in
Simulink
This example shows the general steps to create a System object for use in
Simulink. The example performs system identification using a least mean
squares (LMS) adaptive filter and is similar to the System Identification
Using MATLAB System Blocks Simulink example.

A System object is a component you can use to create your system in MATLAB.
You can write the code in MATLAB and use that code to create a block in
Simulink. To define your own System object, you write a class definition
file, which is a text-based MATLAB file that contains the code defining your
object. See “System Object Integration” in the Simulink documentation. The
LMS Adaptive Filter and Integer Delay blocks in this example model are each
from a System object class definition file. These files are described below.

Define System Object with Block Customizations

1 Create a class definition text file to define your System object. This example
creates a least mean squares (LMS) filter and includes customizations to
the block icon and dialog appearance.

Note Instead of manually creating your class definition file, you can use
the New > System Object > Simulink Extension menu option to open a
template. This template includes customizations of the System object for use
in the Simulink MATLAB System block. You edit the template file, using it as
guideline, to create your own System object.

4-28

System Design in Simulink Using System Objects

2 On the first line of the class definition file, specify the name of
your System object and subclass from both matlab.System and
matlab.system.mixin.CustomIcon. The matlab.System base class enables
you to use all the basic System object methods and specify the block input
and output names, title, and property groups. The CustomIcon mixin class
enables the method that lets you specify the block icon.

3 Add the appropriate basic System object methods to set up, reset, set the
number of inputs and outputs, and run your algorithm. See the reference
pages for each method and the full class definition file below for the
implementation of each of these methods.

• Use the setupImpl method to perform one-time calculations and initialize
variables.

• Use the stepImpl method to implement the block’s algorithm.

• Use the resetImpl to reset the state properties or DiscreteState
properties.

• Use the getNumInputsImpl and getNumOutputsImpl methods to specify
the number of inputs and outputs, respectively.

4 Add the appropriate CustomIcon methods to define the appearance of the
MATLAB System block in Simulink. See the reference pages for each method
and the full class definition file below for the implementation of each of these
methods.

• Use the getHeaderImpl method to specify the title and description to
display on the block dialog.

• Use the getPropertyGroupsImpl method to specify groups of properties to
display on the block dialog.

• Use the getIconImplmethod to specify the text to display on the block icon.

• Use the getInputNamesImpl and getOutputNamesImpl methods to specify
the labels to display for the block input and output ports.

The full class definition file for the least mean squares filter is:

classdef lmsSysObj < matlab.System &...
matlab.system.mixin.CustomIcon

4-29

4 System Objects

%lmsSysObj Least mean squares (LMS) adaptive filtering.
%#codegen

properties
% Mu Step size
Mu = 0.005;

end

properties (Nontunable)
% Weights Filter weights
Weights = 0;
% N Number of filter weights
N = 32;

end

properties (DiscreteState)
X;
H;

end

methods(Access=protected)
function setupImpl(obj, ~, ~)

obj.X = zeros(obj.N,1);
obj.H = zeros(obj.N,1);

end

function [y, e_norm] = stepImpl(obj,d,u)
tmp = obj.X(1:obj.N-1);
obj.X(2:obj.N,1) = tmp;
obj.X(1,1) = u;
y = obj.X'*obj.H;
e = d-y;
obj.H = obj.H + obj.Mu*e*obj.X;
e_norm = norm(obj.Weights'-obj.H);

end

function resetImpl(obj)
obj.X = zeros(obj.N,1);
obj.H = zeros(obj.N,1);

end

4-30

System Design in Simulink Using System Objects

function num = getNumInputsImpl(~)
num = 2;

end
function num = getNumOutputsImpl(~)

num = 2;
end

end

% Block icon and dialog customizations
methods(Static, Access=protected)

function header = getHeaderImpl
header = matlab.system.display.Header(...

'lmsSysObj', ...
'Title', 'LMS Adaptive Filter');

end

function groups = getPropertyGroupsImpl
upperGroup = matlab.system.display.SectionGroup(...

'Title','General',...
'PropertyList',{'Mu'}); %#ok<*EMCA>

lowerGroup = matlab.system.display.SectionGroup(...
'Title','Coefficients', ...
'PropertyList',{'Weights','N'}); %#ok<*EMCA>

groups = [upperGroup,lowerGroup];
end

end

methods(Access=protected)
function icon = getIconImpl(~)

icon = sprintf('LMS Adaptive\nFilter');
end
function [in1name, in2name] = getInputNamesImpl(~)

in1name = 'Desired';
in2name = 'Actual';

end
function [out1name, out2name] = getOutputNamesImpl(~)

out1name = 'Output';

4-31

4 System Objects

out2name = 'EstError';
end

end
end

Define System Object with Nondirect Feedthrough

1 Create a class definition text file to define your System object. This example
creates an integer delay and includes customizations to the block icon. It
implements a System object that you can use for nondirect feedthrough.
See“Use System Objects in Feedback Loops” for more information.

2 On the first line of the class definition file, subclass from matlab.System,
matlab.system.mixin.CustomIcon, and matlab.system.mixin.Nondirect.
The matlab.System base class enables you to use all the basic System object
methods and specify the block input and output names, title, and property
groups. The CustomIcon mixin class enables the method that lets you specify
the block icon. The Nondirect mixin enables the methods that let you specify
how the block is updated and what it outputs.

3 Add the appropriate basic System object methods to set up and reset the
object and set and validate the properties. Since this object supports nondirect
feedthrough, you do not implement the stepImpl method. You implement the
updateImpl and outputImpl methods instead. See the reference pages for
each method and the full class definition file below for the implementation of
each of these methods.

• Use the setupImpl method to initialize some of the object’s properties.

• Use the resetImpl to reset the property states.

• Use the validatePropertiesImpl to check that the property values are
valid.

4 Add the following Nondirect mixin class methods instead of the stepImpl
method to specify how the block updates its state and its output. See the
reference pages and the full class definition file below for the implementation
of each of these methods.

• Use the outputImpl method to implement code to calculate the block
output.

4-32

System Design in Simulink Using System Objects

• Use the updateImpl method to implement code to update the block’s
internal states.

• Use the isInputDirectFeedthroughImpl to specify that the block is not
direct feedthrough. Its inputs do not directly affect its outputs.

5 Add the getIconImpl method to define the block icon when it is used in
Simulink via the MATLAB System block. See the reference page and the full
class definition file below for the implementation of this method.

The full class definition file for the delay is:

classdef intDelaySysObj < matlab.System &...
matlab.system.mixin.Nondirect &...
matlab.system.mixin.CustomIcon

%intDelaySysObj Delay input by specified number of samples.
%#codegen

properties
%InitialOutput Initial output
InitialOutput = 0;

end

properties (Nontunable)
% NumDelays Number of delays
NumDelays = 1;

end

properties(DiscreteState)
PreviousInput;

end

methods(Access=protected)
function setupImpl(obj, ~)

obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;
end

function [y] = outputImpl(obj, ~)
% Output does not directly depend on input
y = obj.PreviousInput(end);

end

4-33

4 System Objects

function updateImpl(obj, u)
obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

end

function flag = isInputDirectFeedthroughImpl(~,~)
flag = false;

end

function validatePropertiesImpl(obj)
if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))

error('Number of delays must be positive non-zero scalar value.
end
if (numel(obj.InitialOutput)>1)

error('Initial output must be scalar value.');
end

end

function resetImpl(obj)
obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

end

function icon = getIconImpl(~)
icon = sprintf('Integer\nDelay');

end
end

end

Test New System Objects in MATLAB

1 Create an instance of your new System object. For example, create an
instance of the lmsSysObj.

s = lmsSysObj;

2 Run the step method on the object multiple times with different inputs. This
tests for syntax errors and other possible issues before you add it to Simulink.
For example,

desired = 0;
actual = 0.2;

4-34

System Design in Simulink Using System Objects

step(s,desired,actual);

Add System Objects to Your Simulink Model

1 Add your System objects to your Simulink model by using the MATLAB
System block as described in “Mapping System Objects to Block Dialog Box”.

2 Add other Simulink blocks, connect them, and configure any needed
parameters to complete your model as described in the Simulink
documentation. See the System Identification for an FIR System Using
MATLAB System Blocks Simulink example.

3 Run your model in the same way you run any Simulink model.

.

4-35

	toc
	Introduction
	Communications System Toolbox Product Description
	Key Features

	System Setup
	Required Products
	Expected Background
	Configure the Simulink Environment for Communications Models
	Using commstartup.m

	Access the Block Libraries

	System Simulation
	256-QAM with Simulink Blocks
	Section Overview
	Opening the Model
	Overview of the Model
	Quadrature Amplitude Modulation
	Run a Simulation
	Display the Error Rate
	Set Block Parameters
	Display a Phase Noise Plot

	16-QAM with MATLAB Functions
	Introduction
	Modulate a Random Signal
	Generate a Random Binary Data Stream
	Convert the Binary Signal to an Integer-Valued Signal
	Modulate using 16-QAM
	Add White Gaussian Noise
	Create a Constellation Diagram
	Demodulate 16-QAM
	Convert the Integer-Valued Signal to a Binary Signal
	Compute the System BER

	Plot Signal Constellations
	Binary Symbol Mapping for 16-QAM Constellation
	Gray-coded Symbol Mapping for 16-QAM Constellation
	Examine the Plots

	Pulse Shaping Using a Raised Cosine Filter
	Establish Simulation Framework
	Create Raised Cosine Filter
	BER Simulation
	Visualization of Filter Effects

	Error Correction using a Convolutional Code
	Establish Simulation Framework
	Generate Random Data
	Convolutional Encoding
	Modulate Data
	Raised Cosine Filtering
	AWGN Channel
	Receive and Demodulate Signal
	Viterbi Decoding
	BER Calculation
	More About Delays

	Iterative Design Workflow for Communication Systems
	Simulate a basic communications system
	In MATLAB
	In Simulink
	Introduce convolutional coding and hard-decision Viterbi decodin
	In MATLAB
	In Simulink
	Improve results using soft-decision decoding
	In MATLAB
	In Simulink
	Use turbo coding to improve BER performance
	In MATLAB
	In Simulink
	Apply a Rayleigh channel model
	In MATLAB
	In Simulink
	Use OFDM-based equalization to correct multipath fading
	In MATLAB
	In Simulink
	Use multiple antennas to further improve system performance
	In MATLAB
	In Simulink
	Accelerate the simulation using MATLAB Coder
	In MATLAB

	QPSK and OFDM with MATLAB System Objects
	Simulate a basic communications system
	Introduce convolutional coding and hard-decision Viterbi decodin
	Improve results using soft-decision decoding
	Use turbo coding to improve BER performance
	Apply a Rayleigh channel model
	Use OFDM-based equalization to correct multipath fading
	Use multiple antennas to further improve system performance
	Accelerate the simulation using MATLAB Coder

	Accelerating BER Simulations Using the Parallel Computing Toolbo

	Visualization and Measurements
	Scatter Plot and Eye Diagram with MATLAB
	Scatter Plot and Eye Diagram with MATLAB
	Scatter Plot
	Eye Diagram
	EVM and MER Measurements with Simulink
	ACPR and CCDF Measurements with MATLAB
	ACPR Measurements
	CCDF Measurements

	System Objects
	What Is a System Toolbox?
	What Are System Objects?
	When to Use System Objects Instead of MATLAB Functions
	System Objects vs. MATLAB Functions
	Process Audio Data Using Only MATLAB Functions Code
	Process Audio Data Using System Objects

	System Design and Simulation in MATLAB
	System Design and Simulation in Simulink
	System Objects in MATLAB Code Generation
	System Objects in Generated Code
	System Objects Code with Persistent Objects for Code Generation
	System Objects Code Without Persistent Objects for Code Generati
	Usage Rules and Limitations for System Objects in Generated MATL

	System Objects in codegen
	System Objects in the MATLAB Function Block
	System Objects in the MATLAB System Block
	System Objects and MATLAB Compiler Software

	System Objects in Simulink
	System Objects in the MATLAB Function Block
	System Objects in the MATLAB System Block

	System Object Methods
	What Are System Object Methods?
	The Step Method
	Common Methods

	System Design in MATLAB Using System Objects
	Create Components for Your System
	Configure Components for Your System
	When to Configure Components
	Display Component Property Values
	Configure Component Property Values
	Create and Configure Components at the Same Time

	Assemble Components to Create Your System
	Connect Inputs and Outputs
	Code for the Whole System

	Run Your System
	How to Run Your System
	What You Cannot Change While Your System Is Running

	Reconfigure Your System During Runtime
	When Can You Change Component Properties?
	Change a Tunable Property in Your System
	Change Input Complexity or Dimensions

	System Design in Simulink Using System Objects
	Define New Kinds of System Objects for Use in Simulink
	Define System Object with Block Customizations
	Define System Object with Nondirect Feedthrough
	Test New System Objects in MATLAB
	Add System Objects to Your Simulink Model

